scholarly journals Goal Probability Analysis in Probabilistic Planning: Exploring and Enhancing the State of the Art

2016 ◽  
Vol 57 ◽  
pp. 229-271 ◽  
Author(s):  
Marcel Steinmetz ◽  
Jörg Hoffmann ◽  
Olivier Buffet

Unavoidable dead-ends are common in many probabilistic planning problems, e.g. when actions may fail or when operating under resource constraints. An important objective in such settings is MaxProb, determining the maximal probability with which the goal can be reached, and a policy achieving that probability. Yet algorithms for MaxProb probabilistic planning are severely underexplored, to the extent that there is scant evidence of what the empirical state of the art actually is. We close this gap with a comprehensive empirical analysis. We design and explore a large space of heuristic search algorithms, systematizing known algorithms and contributing several new algorithm variants. We consider MaxProb, as well as weaker objectives that we baptize AtLeastProb (requiring to achieve a given goal probabilty threshold) and ApproxProb (requiring to compute the maximum goal probability up to a given accuracy). We explore both the general case where there may be 0-reward cycles, and the practically relevant special case of acyclic planning, such as planning with a limited action-cost budget. We design suitable termination criteria, search algorithm variants, dead-end pruning methods using classical planning heuristics, and node selection strategies. We design a benchmark suite comprising more than 1000 instances adapted from the IPPC, resource-constrained planning, and simulated penetration testing. Our evaluation clarifies the state of the art, characterizes the behavior of a wide range of heuristic search algorithms, and demonstrates significant benefits of our new algorithm variants.

2019 ◽  
Vol 34 (21) ◽  
pp. 1950169
Author(s):  
Aihan Yin ◽  
Kemeng He ◽  
Ping Fan

Among many classic heuristic search algorithms, the Grover quantum search algorithm (QSA) can play a role of secondary acceleration. Based on the properties of the two-qubit Grover QSA, a quantum dialogue (QD) protocol is proposed. In addition, our protocol also utilizes the unitary operations and single-particle measurements. The transmitted quantum state (except for the decoy state used for detection) can transmit two-bits of security information simultaneously. Theoretical analysis shows that the proposed protocol has high security.


2020 ◽  
Vol 34 (06) ◽  
pp. 9827-9834
Author(s):  
Maximilian Fickert ◽  
Tianyi Gu ◽  
Leonhard Staut ◽  
Wheeler Ruml ◽  
Joerg Hoffmann ◽  
...  

Suboptimal heuristic search algorithms can benefit from reasoning about heuristic error, especially in a real-time setting where there is not enough time to search all the way to a goal. However, current reasoning methods implicitly or explicitly incorporate assumptions about the cost-to-go function. We consider a recent real-time search algorithm, called Nancy, that manipulates explicit beliefs about the cost-to-go. The original presentation of Nancy assumed that these beliefs are Gaussian, with parameters following a certain form. In this paper, we explore how to replace these assumptions with actual data. We develop a data-driven variant of Nancy, DDNancy, that bases its beliefs on heuristic performance statistics from the same domain. We extend Nancy and DDNancy with the notion of persistence and prove their completeness. Experimental results show that DDNancy can perform well in domains in which the original assumption-based Nancy performs poorly.


Author(s):  
Bryon Kucharski ◽  
Azad Deihim ◽  
Mehmet Ergezer

This research was conducted by an interdisciplinary team of two undergraduate students and a faculty to explore solutions to the Birds of a Feather (BoF) Research Challenge. BoF is a newly-designed perfect-information solitaire-type game. The focus of the study was to design and implement different algorithms and evaluate their effectiveness. The team compared the provided depth-first search (DFS) to heuristic algorithms such as Monte Carlo tree search (MCTS), as well as a novel heuristic search algorithm guided by machine learning. Since all of the studied algorithms converge to a solution from a solvable deal, effectiveness of each approach was measured by how quickly a solution was reached, and how many nodes were traversed until a solution was reached. The employed methods have a potential to provide artificial intelligence enthusiasts with a better understanding of BoF and novel ways to solve perfect-information games and puzzles in general. The results indicate that the proposed heuristic search algorithms guided by machine learning provide a significant improvement in terms of number of nodes traversed over the provided DFS algorithm.


2012 ◽  
Vol 43 ◽  
pp. 523-570 ◽  
Author(s):  
C. Hernandez ◽  
J. A. Baier

Heuristics used for solving hard real-time search problems have regions with depressions. Such regions are bounded areas of the search space in which the heuristic function is inaccurate compared to the actual cost to reach a solution. Early real-time search algorithms, like LRTA*, easily become trapped in those regions since the heuristic values of their states may need to be updated multiple times, which results in costly solutions. State-of-the-art real-time search algorithms, like LSS-LRTA* or LRTA*(k), improve LRTA*'s mechanism to update the heuristic, resulting in improved performance. Those algorithms, however, do not guide search towards avoiding depressed regions. This paper presents depression avoidance, a simple real-time search principle to guide search towards avoiding states that have been marked as part of a heuristic depression. We propose two ways in which depression avoidance can be implemented: mark-and-avoid and move-to-border. We implement these strategies on top of LSS-LRTA* and RTAA*, producing 4 new real-time heuristic search algorithms: aLSS-LRTA*, daLSS-LRTA*, aRTAA*, and daRTAA*. When the objective is to find a single solution by running the real-time search algorithm once, we show that daLSS-LRTA* and daRTAA* outperform their predecessors sometimes by one order of magnitude. Of the four new algorithms, daRTAA* produces the best solutions given a fixed deadline on the average time allowed per planning episode. We prove all our algorithms have good theoretical properties: in finite search spaces, they find a solution if one exists, and converge to an optimal after a number of trials.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1186
Author(s):  
Fahed Jubair ◽  
Mohammed Hawa

Pathfinding is the problem of finding the shortest path between a pair of nodes in a graph. In the context of uniform-cost undirected grid maps, heuristic search algorithms, such as A ★ and weighted A ★ ( W A ★ ), have been dominantly used for pathfinding. However, the lack of knowledge about obstacle shapes in a gird map often leads heuristic search algorithms to unnecessarily explore areas where a viable path is not available. We refer to such areas in a grid map as blocked areas (BAs). This paper introduces a preprocessing algorithm that analyzes the geometry of obstacles in a grid map and stores knowledge about blocked areas in a memory-efficient balanced binary search tree data structure. During actual pathfinding, a search algorithm accesses the binary search tree to identify blocked areas in a grid map and therefore avoid exploring them. As a result, the search time is significantly reduced. The scope of the paper covers maps in which obstacles are represented as horizontal and vertical line-segments. The impact of using the blocked area knowledge during pathfinding in A ★ and W A ★ is evaluated using publicly available benchmark set, consisting of sixty grid maps of mazes and rooms. In mazes, the search time for both A ★ and W A ★ is reduced by 28 % , on average. In rooms, the search time for both A ★ and W A ★ is reduced by 30 % , on average. This is achieved while preserving the search optimality of A ★ and the search sub-optimality of W A ★ .


2009 ◽  
Vol 34 ◽  
pp. 27-59 ◽  
Author(s):  
N. Meuleau ◽  
E. Benazera ◽  
R. I. Brafman ◽  
E. A. Hansen ◽  
Mausam

We consider the problem of optimal planning in stochastic domains with resource constraints, where the resources are continuous and the choice of action at each step depends on resource availability. We introduce the HAO* algorithm, a generalization of the AO* algorithm that performs search in a hybrid state space that is modeled using both discrete and continuous state variables, where the continuous variables represent monotonic resources. Like other heuristic search algorithms, HAO* leverages knowledge of the start state and an admissible heuristic to focus computational effort on those parts of the state space that could be reached from the start state by following an optimal policy. We show that this approach is especially effective when resource constraints limit how much of the state space is reachable. Experimental results demonstrate its effectiveness in the domain that motivates our research: automated planning for planetary exploration rovers.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


1987 ◽  
Vol 60 (3) ◽  
pp. 381-416 ◽  
Author(s):  
B. S. Nau

Abstract The understanding of the engineering fundamentals of rubber seals of all the various types has been developing gradually over the past two or three decades, but there is still much to understand, Tables V–VII summarize the state of the art. In the case of rubber-based gaskets, the field of high-temperature applications has scarcely been touched, although there are plans to initiate work in this area both in the U.S.A. at PVRC, and in the U.K., at BHRA. In the case of reciprocating rubber seals, a broad basis of theory and experiment has been developed, yet it still is not possible to design such a seal from first principles. Indeed, in a comparative series of experiments run recently on seals from a single batch, tested in different laboratories round the world to the same test procedure, under the aegis of an ISO working party, a very wide range of values was reported for leakage and friction. The explanation for this has still to be ascertained. In the case of rotary lip seals, theories and supporting evidence have been brought forward to support alternative hypotheses for lubrication and sealing mechanisms. None can be said to have become generally accepted, and it remains to crystallize a unified theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Dunbo Cai ◽  
Sheng Xu ◽  
Tongzhou Zhao ◽  
Yanduo Zhang

Pruning techniques and heuristics are two keys to the heuristic search-based planning. Thehelpful actionspruning (HAP) strategy andrelaxed-plan-based heuristicsare two representatives among those methods and are still popular in the state-of-the-art planners. Here, we present new analyses on the properties of HAP. Specifically, we show new reasons for which HAP can cause incompleteness of a search procedure. We prove that, in general, HAP is incomplete for planning with conditional effects if factored expansions of actions are used. To preserve completeness, we propose a pruning strategy that is based onrelevance analysisandconfrontation. We will show that bothrelevance analysisandconfrontationare necessary. We call it theconfrontation and goal relevant actionspruning (CGRAP) strategy. However, CGRAP is computationally hard to be exactly computed. Therefore, we suggest practical approximations from the literature.


2020 ◽  
Vol 34 (03) ◽  
pp. 2327-2334
Author(s):  
Vidal Alcázar ◽  
Pat Riddle ◽  
Mike Barley

In the past few years, new very successful bidirectional heuristic search algorithms have been proposed. Their key novelty is a lower bound on the cost of a solution that includes information from the g values in both directions. Kaindl and Kainz (1997) proposed measuring how inaccurate a heuristic is while expanding nodes in the opposite direction, and using this information to raise the f value of the evaluated nodes. However, this comes with a set of disadvantages and remains yet to be exploited to its full potential. Additionally, Sadhukhan (2013) presented BAE∗, a bidirectional best-first search algorithm based on the accumulated heuristic inaccuracy along a path. However, no complete comparison in regards to other bidirectional algorithms has yet been done, neither theoretical nor empirical. In this paper we define individual bounds within the lower-bound framework and show how both Kaindl and Kainz's and Sadhukhan's methods can be generalized thus creating new bounds. This overcomes previous shortcomings and allows newer algorithms to benefit from these techniques as well. Experimental results show a substantial improvement, up to an order of magnitude in the number of necessarily-expanded nodes compared to state-of-the-art near-optimal algorithms in common benchmarks.


Sign in / Sign up

Export Citation Format

Share Document