Change in Leafy Spurge (Euphorbia esula) Density and Soil Seedbank Composition 10 Years following Release of Aphthona spp. Biological Control Agents

2013 ◽  
Vol 6 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Cassandra M. Setter ◽  
Rodney G. Lym

AbstractFlea beetles (Aphthona spp.) were released in the Little Missouri National Grasslands (LMNG) in western North Dakota in 1999 to control leafy spurge. The changes in leafy spurge density and soil seedbank composition were evaluated on two ecological sites 10 yr (2009) after Aphthona spp. release to monitor the effectiveness of the insects on weed control and the associated changes in plant communities. In 2009, leafy spurge stem density averaged 2 and 9 stems m−2 (0.19 to 0.84 ft−2) in the loamy overflow and loamy sites, respectively, compared with 110 and 78 stems m−2, respectively, in 1999. Leafy spurge constituted nearly 67% of the loamy overflow seedbank in 1999, compared with 2% in 2009. In the loamy seedbank, the weed represented nearly 70% in 1999, compared with approximately 15% in 2009. As leafy spurge abundance was reduced, native species richness and seed count increased 10 yr after Aphthona spp. release. Late seral species represented 17% of the loamy overflow seedbank in 2009, an increase from 5% in 1999. However, Kentucky bluegrass, a nontarget weedy species, increased more than 250% in the loamy overflow seedbank. Late seral species were 38% of the loamy seedbank in 2009, compared with 13% in 1999. The number of native species increased from 31 in 1999 to 39 in 2009 in the loamy overflow seedbank, but only changed from 32 to 34 species in the loamy site during the same period. The reestablishment of native species has been slow, but seedbank analysis indicates the number and type of species found before the leafy spurge infestation have increased. Planting native species in selected areas may have reduced the lag time in these species return to the seedbank and reduced invasion from other nondesirable species, such as Kentucky bluegrass.

2017 ◽  
Vol 10 (2) ◽  
pp. 180-190 ◽  
Author(s):  
Blake M. Thilmony ◽  
Rodney G. Lym

Aphthona spp. flea beetles were released in two ecological sites of the Little Missouri National Grasslands in southwestern North Dakota in 1999 to control leafy spurge. The change in leafy spurge density and soil seedbank composition was monitored to evaluate the effectiveness of the biological weed control agent and the associated change in plant communities 5, 10, and 15 yr after release in loamy overflow (valleys) and loamy sites (ridges). In 2014, 15 yr after release, leafy spurge stem density had decreased 94% from 110 to 7 stems m−2 in the loamy overflow sites and 88% from 78 to 9 stems m−2 in the loamy sites. Leafy spurge represented only 2% and 6% of the loamy overflow and loamy seedbanks in 2004, respectively, compared with nearly 67% and 70%, respectively, in 1999. There was a slow shift to reintroduction of native species into the seedbank over the last 15 yr. The number of desirable species increased to 21 by 2014 (more than three times the number of species in 1999) in the loamy overflow sites, and doubled to 14 species in the loamy sites, while less desirable forb species doubled in both sites. Desirable grass species doubled in the loamy overflow sites by 2014 but remained unchanged in loamy sites. Aphthona spp. successfully controlled leafy spurge for more than 15 yr without any additional control methods or costs to land managers and resulted in the slow return of a subset of native species.


1998 ◽  
Vol 12 (4) ◽  
pp. 602-609 ◽  
Author(s):  
Robert A. Masters ◽  
Daniel D. Beran ◽  
Fernando Rivas-Pantoja

Leafy spurge is an exotic perennial weed that infests more than 1 million ha in North America and reduces rangeland carrying capacity. Experiments were initiated on range sites in Nebraska and North Dakota in 1994 and 1995 to determine the response of leafy spurge and other vegetation to AC 263,222. Herbicide treatments evaluated included AC 263,222 at 0 to 280 g ai/ha, picloram at 560 g ai/ha plus 2,4-D at 1,120 g ae/ha, and quinclorac at 1,120 g ai/ha. In Nebraska, a single application of AC 263,222 in the fall at 140 g/ha provided ≥ 90% leafy spurge control 11 to 12 mo after treatment. At Jamestown, ND, leafy spurge control increased to almost 90% and stem density declined to two shoots/m212 mo after the second consecutive fall application of AC 263,222 at 140 g/ha. At Hankinson, ND, leafy spurge control was ≤ 50% when AC 263,222 was applied in the fall only, but increased to > 80% when AC 263,222 was applied in the fall and again at 70 or 140 g/ha in the spring. There were no differences in herbage biomass of established cool- and warm-season grasses where AC 263,222 at 140 g/ha, picloram plus 2,4-D, quinclorac, or no herbicide was applied in the fall. In contrast, application of AC 263,222 in the fall and again in the spring usually reduced cool-season grass biomass.


2008 ◽  
Vol 22 (3) ◽  
pp. 523-529 ◽  
Author(s):  
Ankush Joshi

Most management tactics used against leafy spurge are not economical, practical, or efficacious when used alone. Combinations of the biological control agent,Aphthonabeetles, the herbicide imazapic (105 g/ha), and interseeded native grass species were evaluated for leafy spurge management at two sites: Sheyenne National Grassland and Ekre Grassland Preserve in North Dakota during 2001 to 2005. At the Sheyenne site, over a 5-yr study period, leafy spurge was reestablishing its stem density after a single application of imazapic, but stand suppression was maintained to < 11 stems/m2when management combined imazapic withAphthonaor interseeding of native grasses.Aphthonabeetles established at the Sheyenne site, but declined as leafy spurge density decreased. However, the remainingAphthonapopulation continued to suppress leafy spurge density. Leafy spurge stem control was successfully maintained for 3 yr byAphthonaand grass competition without repetition of the imazapic treatment. Leafy spurge root dry weights were reduced by 66% (< 111g/m2) in the insect plots during this period. At the Ekre site, similar results were observed for the first 3 yr. However, in the fourth yr, a failure of biological control agents to establish resulted in the resurgence of leafy spurge. During this study, lowerAphthonaemergence was observed in imazapic-treated plots, possibly due to reduced leafy spurge density.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 784-786 ◽  
Author(s):  
Stephen J. Harvey ◽  
Robert M. Nowierski

The growth and development of leafy spurge (Euphorbia esulaL. #3EPHES) collected during postsenescent dormancy and grown in the greenhouse was increasingly stimulated by chilling treatments longer than 14 days duration at 0 to 6 C. Production of stems with flower buds, primary flowers, and secondary flowers was greater in plants chilled for 42 days or more. The effects of chilling on total number of stems, number of strictly vegetative stems, or number of stems with vegetative branching were not significant. The height of the tallest stem per pot was influenced by chilling longer than 42 days. Growth rate also increased as a function of chilling duration. Based on our findings, we believe that there is little possibility that any significant growth can occur in the postsenescent period because of the prevailing climatic conditions found in areas of leafy spurge distribution in North America.


Weeds ◽  
1956 ◽  
Vol 4 (3) ◽  
pp. 275 ◽  
Author(s):  
Duane Le Tourneau

1987 ◽  
Vol 1 (4) ◽  
pp. 314-318 ◽  
Author(s):  
Rodney G. Lym ◽  
Donald R. Kirby

Leafy spurge causes economic loss by reducing both herbage production and use. Herbage use by grazing cattle in various densities of leafy spurge (Euphorbia esulaL. #3EPHES) was evaluated over a 3-yr period in North Dakota. Forage production and disappearance were estimated in four density classes of leafy spurge. Use of cool- and warm-season graminoids, forbs, and leafy spurge was estimated during the middle and the end of each grazing season. Cattle used 20 and 2% of the herbage in the zero and low density infestations, respectively, by mid-season. Moderate and high density infestations were avoided until the milky latex in leafy spurge disappeared in early fall, and herbage availability in zero and low density infestations declined. Herbage use in moderate and high density infestations increased to an average of 46% by the end of the grazing season compared to 61% in zero and low density infestations. An annual herbage loss of at least 35% occurred in pasture infested with 50% density or more of leafy spurge.


1988 ◽  
Vol 66 (11) ◽  
pp. 2247-2257 ◽  
Author(s):  
A. E. Stahevitch ◽  
C. W. Crompton ◽  
W. A. Wojtas

Cytological and cytogenetic studies were carried out on populations of leafy spurge (Euphorbia esula L. s.l.) and its allies primarily from North America but also from Europe. Chromosome numbers were determined for 126 samples of E. esula, 11 of E. cyparissias L., 1 of the hybrid (E. ×pseudoesula Schur) between these two species, and 1 of E. agraria Bieb. All plants of E. esula were hexaploid. Of the total, 125 leafy spurge accessions had a chromosome number of n = 30; 1 of n = 25++. Very few meiotic abnormalities were observed. Euphorbia cyparissias was primarily tetraploid (n = 20), although occasional diploids (n = 10) were encountered. Tetraploids were fertile; diploids were sterile. The hybrid between the two foregoing species had a chromosome number of n = 25, indicating that the E. cyparissias parent was a tetraploid; meiosis in the hybrid was abnormal. Euphorbia agraria was found to have a gametic number of n = 20, which is the first chromosome number determination for this species; meiosis was normal. Artificial crosses were made successfully between 31 accessions of leafy spurge. Seed germination of the F1 progeny slightly exceeded that reported for natural populations, and meiosis was normal. Pollen stability studies were carried out on herbarium material. Stainability was 100% for most of the samples studied. Extensive pollen size polymorphism was found. It is suggested that this phenomenon supports the hypothesis that E. esula is of allopolyploid origin. No cytological or cytogenetic basis was found for considering the leafy spurge accessions examined in this study as other than as a single, albeit somewhat polymorphic, species.


Sign in / Sign up

Export Citation Format

Share Document