Interaction of Cultivar, Planting Pattern, and Weed Management Tactics in Peanut

Weed Science ◽  
2010 ◽  
Vol 58 (4) ◽  
pp. 442-448 ◽  
Author(s):  
G. T. Place ◽  
S. C. Reberg-Horton ◽  
D. L. Jordan

Planting peanut in narrow rows for weed control has not been investigated in recently released Virginia market peanut cultivars. Research was conducted in North Carolina from 2007 to 2009 to determine the effect of cultivar, planting pattern, and level of weed management inputs on weed control, peanut yield, and estimated economic return. Experiments consisted of three levels of weed management (clethodim applied POST, cultivation and hand-removal of weeds, and clethodim and appropriate broadleaf herbicides applied POST), three levels of planting pattern (single rows spaced 91 cm apart, standard twin rows spaced 20 cm apart on 91-cm centers, and narrow twin rows consisting of twin rows spaced 20 cm apart on 46-cm centers), and two Virginia cultivars (‘NC 12C’ and ‘VA 98R’). Weed management affected common lambsquarters, common ragweed, eclipta, nodding spurge, pitted morningglory, Texas millet, and yellow nutsedge control, irrespective of cultivar or planting pattern. Cultivar and planting pattern had only minor effects on weed control and interactions of these treatment factors seldom occurred. Weed control achieved with cultivation plus hand-removal was similar to weed management observed with grass and broadleaf herbicide programs. Pod yield did not differ among treatments when broadleaf weeds were the dominant species but did differ when Texas millet was the most prevalent weed. The highest yield with conventional herbicide weed management was in standard twin and narrow twin row planting patterns, although no differences among planting patterns were noted when cultivation and hand-removal were the primary weed management tactics. Differences in estimated economic return were associated with weed species, and interactions of treatment factors varied by year for that parameter.

2009 ◽  
Vol 23 (1) ◽  
pp. 6-10 ◽  
Author(s):  
David L. Jordan ◽  
Sarah H. Lancaster ◽  
James E. Lanier ◽  
Bridget R. Lassiter ◽  
P. Dewayne Johnson

Research was conducted in North Carolina to compare weed control by various rates of imazapic POST alone or following diclosulam PRE. In a second experiment, weed control by imazapic applied POST alone or with acifluoren, diclosulam, or 2,4-DB was compared. In a final experiment, yellow nutsedge control by imazapic alone and with the fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole was compared. Large crabgrass was controlled more effectively by imazapic POST than diclosulam PRE. Common lambsquarters, common ragweed, and eclipta were controlled more effectively by diclosulam PRE than imazapic POST. Nodding spurge was controlled similarly by both herbicides. Few differences in control were noted when comparing imazapic rates after diclosulam PRE. Applying either diclosulam PRE or imazapic POST alone or in combination increased peanut yield over nontreated peanut in five of six experiments. Few differences in pod yield were noted when comparing imazapic rates. Acifluorfen, diclosulam, and 2,4-DB did not affect entireleaf morningglory, large crabgrass, nodding spurge, pitted morningglory, and yellow nutsedge control by imazapic. Eclipta control by coapplication of imazapic and diclosulam exceeded control by imazapic alone. The fungicides azoxystrobin, chlorothalonil, pyraclostrobin, and tebuconazole did not affect yellow nutsedge control by imazapic.


2008 ◽  
Vol 22 (4) ◽  
pp. 571-579 ◽  
Author(s):  
Ian C. Burke ◽  
Walter E. Thomas ◽  
Jayla R. Allen ◽  
Jim Collins ◽  
John W. Wilcut

Experiments were conducted at three North Carolina research stations in 2003 to evaluate weed control and corn yield in glyphosate-resistant, glufosinate-resistant, imidazolinone-tolerant, and conventional corn weed management systems. Late-season control of common lambsquarters, large crabgrass, and yellow nutsedge increased with metolachlor PRE compared with no PRE herbicide treatment. Common lambsquarters, pitted morningglory, entireleaf morningglory, spurred anoda, and tropic croton control was improved by a single early POST (EPOST) application regardless of herbicide system. Control of common lambsquarters, pitted morningglory, entireleaf morningglory, and spurred anoda was similar for glyphosate and glufosinate systems for each POST over-the-top (POT) herbicide system. A single EPOST application of imazethapyr plus imazapyr to imidazolinone-tolerant corn controlled common lambsquarters, pitted morningglory, entireleaf morningglory, and spurred anoda and was better than a single EPOST application of glyphosate, glufosinate, or nicosulfuron. Tropic croton was controlled ≥ 95% with glufosinate or glyphosate, applied once or twice, or in mixture with metolachlor. A single EPOST application of imazethapyr plus imazapyr or nicosulfuron did not control tropic croton. Common lambsquarters, entireleaf morningglory, large crabgrass, Palmer amaranth, and yellow nutsedge control was greater with a late-POST–directed (LAYBY) of ametryn than no LAYBY. Systems that did not include a POT herbicide system had the lowest percentage in the weed-free yield and the lowest yield. Treatments that included a POT system with or without a PRE treatment of metolachlor yielded within 5% of the weed-free treatment, regardless of herbicide system.


1999 ◽  
Vol 13 (2) ◽  
pp. 276-282 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
Vernon B. Langston

Cloransulam-methyl applied postemergence (POST) following various preplant-incorporated (PPI) herbicides was evaluated in four experiments for weed control in North Carolina soybean over a 2-yr period at three locations. Acifluorfen plus bentazon or chlorimuron alone applied POST injured soybean more than cloransulam-methyl when following any soil-applied herbicide. When following trifluralin PPI, cloransulam-methyl controlled common ragweed, entireleaf morningglory, and pitted morningglory comparable to acifluorfen plus bentazon or chlorimuron. Common lambsquarters and prickly sida control was higher when acifluorfen plus bentazon was applied POST following trifluralin PPI compared to trifluralin PPI followed by cloransulam-methyl or chlorimuron. Acifluorfen plus bentazon or chlorimuron POST controlled yellow nutsedge and smooth pigweed more than cloransulam-methyl POST when following trifluralin PPI. When trifluralin was applied PPI in mixtures with chlorimuron plus metribuzin, flumetsulam, or imazaquin, control of most species was similar regardless of POST treatment used. Soybean treated with cloransulam-methyl yielded 250 kg/ha more than treatments with chlorimuron when these herbicides followed trifluralin plus flumetsulam or trifluralin plus imazaquin. Net returns with different herbicide systems followed trends similar to soybean yield.


2019 ◽  
Vol 33 (03) ◽  
pp. 411-425
Author(s):  
Andrea Smith ◽  
Nader Soltani ◽  
Allan J. Kaastra ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTransgenic crops are being developed with herbicide resistance traits to expand innovative weed management solutions for crop producers. Soybean with traits that confer resistance to the hydroxyphenylpyruvate dioxygenase herbicide isoxaflutole is under development and will provide a novel herbicide mode of action for weed management in soybean. Ten field experiments were conducted over 2 years (2017 and 2018) on five soil textures with isoxaflutole-resistant soybean to evaluate annual weed control using one- and two-pass herbicide programs. The one-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, at a low rate (52.5 + 210 g ai ha−1), medium rate (79 + 316 g ai ha−1), and high rate (105 + 420 g ai ha−1); and glyphosate applied early postemergence (EPOST) or late postemergence (LPOST). The two-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, followed by glyphosate applied LPOST, and glyphosate applied EPOST followed by LPOST. At 4 weeks after the LPOST application, control of common lambsquarters, pigweed species, common ragweed, and velvetleaf was variable at 25% to 69%, 49% to 86%, and 71% to 95% at the low, medium, and high rates of isoxaflutole plus metribuzin, respectively. Isoxaflutole plus metribuzin at the low, medium, and high rates controlled grass species evaluated (i.e., barnyardgrass, foxtail, crabgrass, and witchgrass) 85% to 97%, 75% to 99%, and 86% to 100%, respectively. All two-pass weed management programs provided 98% to 100% control of all species. Weed control improved as the rate of isoxaflutole plus metribuzin increased. Two-pass programs provided excellent, full-season annual grass and broadleaf weed control in isoxaflutole-resistant soybean.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 762-767 ◽  
Author(s):  
N. C. Glaze ◽  
C. C. Dowler ◽  
A. W. Johnson ◽  
D. R. Sumner

Six multiple-cropping systems composed of: a) turnip (Brassica campestrisspp.rapifera), corn (Zea maysL.), and snapbean (Phaseolus vulgarisL.); b) turnip, peanut (Arachis hypogaeaL.), and snapbean; c) turnip, corn, and turnip; d) turnip, peanut, and turnip; e) snapbean, soybean [Glycine max(L.) Merr.], and cabbage (Brassica oleraceaL.); and f) turnip, cucumber (Cucumis sativusL.), cowpea [Vigna unguiculata(L.) Walp.], and turnip were subjected to nematicide and weed control programs of cultivation or herbicides. Herbicide programs were superior to cultivation in control of weeds. Weeds remaining in the row following cultivation competed severely with crops. Weed species remaining were altered depending on the method of control and crop. Yellow nutsedge (Cyperus esculentusL. ♯3CYPES) increased rapidly in all herbicide programs but not in cultivated plots. Pigweeds (Amaranthusspp.) were controlled by herbicides but increased in cultivated plots. Corn, peanut, soybean, and spring snapbean yields were higher in herbicide treatments than in cultivated treatments. Cucumber was the only crop that had increased yields for both main effects, herbicide and nematicide. Turnip was consistently injured in herbicide treatments, which was believed to be caused by residues from previous crops interacting with pathogens and possible allelopathic effects of decaying organic matter.


2004 ◽  
Vol 18 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Ian C. Burke ◽  
John W. Wilcut

An experiment was conducted at five locations in North Carolina during 2000 and 2001 to evaluate weed control, crop injury, and cotton yield. Weed management systems included different combinations of pyrithiobac preemergence (PRE), fluometuron PRE, CGA-362622 postemergence (POST), pyrithiobac POST, and monosodium salt of methylarsonic acid (MSMA) plus prometryn applied late POST-directed (LAYBY). At Goldsboro in 2000, cotton was injured 74 to 78% by CGA-362622 POST when evaluated 4 to 7 d after treatment (DAT). Injury at Clayton, Goldsboro, and Lewiston in 2001 and Rocky Mount in 2000 was less than 16% 4 to 7 DAT with the same treatment and was not apparent by 62 DAT. CGA-362622 controlled common lambsquarters, common ragweed, Palmer amaranth, sicklepod, smooth pigweed, andIpomoeaspecies including entireleaf, ivyleaf, and pitted morningglory, and the addition of pyrithiobac to the herbicide system, either PRE or POST, increased control ofAmaranthusspecies, jimsonweed, and prickly sida. CGA-362622 did not control jimsonweed or prickly sida. Fluometuron PRE, pyrithiobac PRE, and MSMA plus prometryn LAYBY were beneficial for increasing weed control and cotton lint yields. Prometryn plus MSMA LAYBY increased control of common ragweed, entireleaf morningglory, jimsonweed, pitted morningglory, and smooth pigweed and provided higher cotton yields than similar systems without a LAYBY. The greatest weed control and greatest cotton lint yields required complete weed management systems that included a combination of PRE, POST, and LAYBY treatments.


2015 ◽  
Vol 95 (6) ◽  
pp. 1199-1204 ◽  
Author(s):  
Kimberly D. Belfry ◽  
Kristen E. McNaughton ◽  
Peter H. Sikkema

Belfry, K. D., McNaughton, K. E. and Sikkema, P. H. 2015. Weed control in soybean using pyroxasulfone and sulfentrazone. Can. J. Plant Sci. 95: 1199–1204. Pyroxasulfone and sulfentrazone are new herbicides currently being evaluated for weed control in soybean [Glycine max (L.) Merr.] in Ontario, Canada. Seven experiments were conducted over a 3-yr period (2011 to 2013) at Ridgetown and Exeter, Ontario, to evaluate weed management using pyroxasulfone, sulfentrazone and their tank-mixes relative to the industry standard, imazethapyr plus metribuzin. Tank-mixing pyroxasulfone and sulfentrazone provided up to 97, 46, 60, 100 and 71% control of common lambsquarters (Chenopodium album L.), common ragweed (Ambrosia artemisiifolia L.), green foxtail [Setaria viridis (L.) Beauv.], Powell amaranth [Amaranthus powellii (S.) Wats.] and velvetleaf (Abutilon theophrasti Medic.), respectively, at 2 wk after treatment. Control with pyroxasulfone and sulfentrazone was improved when tank-mixed, relative to application of each herbicide separately. Although control was variable across weed species, no difference in control was identified between pyroxasulfone plus sulfentrazone and imazethapyr plus metribuzin. Soybean yield was up to 2.7, 2.4 and 2.9 t ha−1 for pyroxasulfone, sulfentrazone and pyroxasulfone plus sulfentrazone application, yet imazethapyr plus metribuzin provided the highest yield (3.3 t ha−1). This research demonstrates that pyroxasulfone plus sulfentrazone may be used as a valuable weed control option in soybean; however, weed community composition may limit herbicidal utility.


1999 ◽  
Vol 13 (3) ◽  
pp. 594-598 ◽  
Author(s):  
Shawn D. Askew ◽  
John W. Wilcut ◽  
John R. Cranmer

Flumioxazin plus metolachlor mixtures preemergence (PRE) were evaluated with or without postemergence (POST) herbicides for weed control and peanut (Arachis hypogaea) response in three North Carolina studies. Metolachlor PRE at 2.24 kg ai/ha controlled goosegrass (Eleusine indica) and yellow nutsedge (Cyperus esculentus) 93 and 80%, respectively, and control was not improved with flumioxazin or norflurazon. Metolachlor plus flumioxazin PRE at 0.07 or 0.11 kg ai/ha controlled common lambsquarters (Chenopodium album); entireleaf (Ipomoea hederaceavar.integriuscula), ivyleaf (I. hederacea), and pitted morningglory (I. lacunosa); and prickly sida (Sida spinosa) better than metolachlor plus norflurazon PRE at 1.34 kg ai/ha. Morningglories (Ipomoeaspp.) were controlled 77 and 86% with flumioxazin PRE at 0.07 and 0.11 kg/ha, respectively, and control was increased to nearly 100% with acifluorfen plus 2,4-DB or lactofen plus 2,4-DB POST. Peanut injury by flumioxazin and norflurazon was observed at one location in 1997; however, yields were not reduced. Peanut treated with metolachlor plus flumioxazin PRE at either rate yielded at least 3,750 kg/ha compared to 3,120 kg/ha with metolachlor plus norflurazon PRE or 1,320 kg/ha with metolachlor PRE.


1996 ◽  
Vol 10 (2) ◽  
pp. 327-336 ◽  
Author(s):  
J. Rolf Olsen ◽  
Jayson K. Harper ◽  
William S. Curran

A computer model which selects least cost herbicide programs given a minimum desired level of weed control could provide growers with economical weed management options. Using an integer programming approach, a herbicide selection model was developed for corn production under Pennsylvania conditions. Models for three rotations (corn-soybean, corn-corn, and corn-alfalfa) under three tillage systems (conventional tillage, reduced tillage, and no-till) that evaluated 21 soil-applied and 13 postemergence herbicide options for 24 weeds were developed. Each model minimizes the cost of a herbicide program subject to a desired level of weed control. By selecting the weed species to be controlled and the level of control desired, customized herbicide programs can be generated. The models can also be used to evaluate the cost of changing the level of control desired for an individual weed species or set of weeds.


2006 ◽  
Vol 20 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Walter E. Thomas ◽  
Tim T. Britton ◽  
Scott B. Clewis ◽  
Shawn D. Askew ◽  
John W. Wilcut

Field studies were conducted at three locations to evaluate glyphosate-resistant (GR) cotton response, weed control, and cotton lint yields to two formulations of glyphosate (diammonium salt– glyphosate and isopropylamine salt–glyphosate) and trifloxysulfuron applied early postemergence (EPOST) alone or to tank mixtures of trifloxysulfuron with each glyphosate formulation, with and without a late postemergence-directed (LAYBY) treatment of prometryn plus MSMA. Trifloxysulfuron and both formulations of glyphosate controlled common lambsquarters and pitted morningglory. Both glyphosate formulations provided equivalent control of common lambsquarters, goosegrass, pitted morningglory, prickly sida, and smooth pigweed. Trifloxysulfuron controlled smooth pigweed better than either glyphosate formulation but did not control goosegrass or prickly sida. Prometryn plus MSMA LAYBY improved late-season control of common lambsquarters, goosegrass, large crabgrass, and pitted morningglory for all EPOST systems and improved late-season smooth pigweed control for EPOST systems that did not include trifloxysulfuron. Cotton injury was 2% or less from both glyphosate formulations, while trifloxysulfuron injured ‘Deltapine 5415RR’ 7 to 16% at two locations. At a third location, trifloxysulfuron injured ‘Paymaster 1218RR/BG’ 24%, and when applied in mixture with either glyphosate formulation, injury increased to at least 72%. Cotton injury was transient at the first two locations and was not visually apparent 3 to 5 wk later. Cotton yield at the third location was reduced. High cotton yields reflected high levels of weed control.


Sign in / Sign up

Export Citation Format

Share Document