Maize Dwarf Mosaic Can Reduce Weed Suppressive Ability of Sweet Corn

Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Martin M. Williams ◽  
Jerald K. Pataky

Maize dwarf mosaic (MDM) stunts corn growth, delays development, and is the most prevalent viral disease of sweet corn grown in many regions of North America and Europe. Although some weeds escape control in most sweet corn fields, the extent to which MDM influences the weed suppressive ability of the crop is unknown. Field studies were conducted over a 3-yr period to characterize the influence of variable MDM incidence in sweet corn on growth, fecundity, and germinability of wild-proso millet, a common weed in the crop. Treatments included five levels of MDM incidence (0, 25, 50, 75, and 100% of plants infected) in two MDM-susceptible hybrids differing in weed suppressive ability. Previous research showed that hybrid ‘Legacy’ had greater weed suppressive ability than ‘Sugar Buns’. Wild-proso millet biomass and fecundity depended largely on the hybrid in which the weed was growing. Wild-proso millet growing in Sugar Buns weighed 45 to 117% more than wild-proso millet in Legacy. Incidence of MDM in sweet corn affected wild-proso millet biomass and fecundity, but only under high weed population densities. When wild-proso millet was observed at 122 plants m−2, weed biomass increased 9 g m−2 for each additional 10% incidence of MDM of sweet corn. Weed suppressive ability of the competitive and less competitive hybrids were influenced to the same extent by MDM. Coupled with a lack of resistance to MDM in two-thirds of commercial sweet corn hybrids, the disease could be an additional factor perpetuating weed growth and fecundity in sweet corn, particularly in fields with high population densities of wild-proso millet.

HortScience ◽  
2006 ◽  
Vol 41 (6) ◽  
pp. 1449-1454 ◽  
Author(s):  
Martin M. Williams ◽  
Rick A. Boydston ◽  
Adam S. Davis

Research in dent corn has found significant variation in crop/weed competition for light among hybrids. However, little has been published on the extent of variation in sweet corn competitive ability. Field studies were conducted under weed-free conditions to quantify canopy development and light environment among three sweet corn hybrids and to determine associations among canopy characteristics to crop yield. An early-season hybrid (Spirit) and two midseason hybrids (WHT2801 and GH2547) were grown at experimental sites located near Urbana, Ill., and Prosser, Wash., in 2004 and 2005. Maximum leaf area index (LAI) and intercepted photosynthetically active radiation (PAR) was typically highest for GH2547 and lowest for Spirit. Most differences in vertical LAI among hybrids was observed above 60 and 150 cm in Illinois and Washington, respectively, with WHT2801 and GH2547 having leaf area distributed higher in the canopy than Spirit. Both number and mass of marketable ears were positively correlated with maximum relative growth rate (correlation coefficients 0.60–0.81), leaf area duration (0.68–0.79), total LAI (0.56–0.74) at R1, and intercepted PAR (0.74–0.83) at R1. Differences in canopy properties and interception of solar radiation among Spirit, WHT2801, and GH2547 lead us to hypothesize that variation in weed-suppressive ability exists among hybrids. Future testing of this hypothesis will provide knowledge of interactions specific to sweet corn useful for developing improved weed management systems.


1990 ◽  
Vol 4 (2) ◽  
pp. 433-439 ◽  
Author(s):  
R. Gordon Harvey ◽  
Gregory R. McNevin

Field studies evaluated the effects of crop, crop rotation, planting date, row spacing, no-till planting, and herbicides on wild-proso millet control. Benefin and EPTC reduced wild-proso millet biomass in new seedings of alfalfa, and the combination of herbicides and forage harvest prevented wild-proso millet seed production in that crop. Wild-proso millet seedling populations were reduced and corn yields increased when corn followed 1 to 4 yr of alfalfa. Apparent effectiveness of herbicides in corn increased after cropping with alfalfa. Germination of buried wild-proso millet seed decreased approximately 90% after 54 months which is equivalent to 4-yr prior cropping to alfalfa. Wild-proso millet control and field and sweet corn yields increased when the crops were planted late season (May 17) rather than early season (April 27). Planting sweet corn in rows spaced 76 cm rather than 108 cm apart also increased sweet corn yields. EPTC plus dichlormid (EPTC+) plus cyanazine always controlled wild-proso millet equal to or better than EPTC+alone. When field corn was planted no-till into killed alfalfa sod, combinations of pendimethalin plus simazine and pendimethalin plus cyanazine provided the best wild-proso millet control and corn yields. But the following year when corn was no-till planted into corn stubble of the identical plots, wild-proso millet control from the same treatments tended to be lower and corn yields were reduced.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 437-442 ◽  
Author(s):  
Martin M. Williams ◽  
Rick A. Boydston

Sweet corn is seeded under a wide range of population densities; however, the extent to which variable population density influences weed suppression is unknown. Therefore, field studies were undertaken to quantify the influence of sweet corn seeding level on growth, seed production, and post-harvest seed germination of wild-proso millet, one of the most problematic weeds in the crop. As crop seeding level increased, path analysis results indicated the crop canopy became taller and thicker, resulting in less wild-proso millet biomass, seed production, and germinability. However, at the level of individual fields, reductions in wild-proso millet growth and seed production were modest, at best, between a crop population currently used by growers and a higher crop population known to optimize yield of certain hybrids. These results indicate near-future increases in sweet corn seeding levels may play a minor role in improving weed management in individual sweet corn fields. Nonetheless, a reduction in crop populations, via weather- or management-driven phenomenon, increases risk of greater wild-proso millet seed production.


Plant Disease ◽  
1999 ◽  
Vol 83 (12) ◽  
pp. 1177-1177 ◽  
Author(s):  
J. K. Pataky ◽  
W. F. Tracy

Single, dominant resistance genes have been used successfully for the past 15 years to control common rust, caused by Puccinia sorghi, on sweet corn in the United States. Most sweet corn hybrids grown in the Midwest for mid- to late-season processing have Rp resistance, which is expressed as hypersensitive reactions resulting in chlorotic or necrotic flecks with little or no formation of urediniospores. Many, but not all, Rp-resistant sweet corn hybrids carry the gene Rp1D. Biotypes of P. sorghi in North America have been avirulent on plants with the Rp1D gene, except for an isolate collected in Kansas in 1990 (1). In a sweet corn nursery in Urbana, IL, in 1997, small uredinia of P. sorghi occurred on 27 of 79 Rp-resistant sweet corn hybrids that also were infected severely with southern rust caused by P. polysora (2). During August and September 1999, small uredinia or fully susceptible reactions to common rust were observed on several Rp-resistant sweet corn hybrids grown in an area bounded by Mendota, IL, Ripon, WI, and Le Sueur, MN. Southern rust also was prevalent and frequently severe in the area. Isolates of P. sorghi from Rp-resistant corn were collected during September 1999 from Mendota, Rock Falls, and Dekalb, IL; Sun Prairie, Madison, and Ripon, WI; and Rochester, Stanton, and Le Sueur, MN. Ten two-leaved seedlings of one susceptible sweet corn hybrid and five Rp-resistant hybrids, including hybrids known to carry the gene Rp1D, were inoculated in greenhouse trials. Each location (collection) was a separate trial. Inocula were prepared from several uredinia of P. sorghi per location. One set of seedlings also was inoculated with P. polysora. Susceptible reactions (uredinia with urediniospores) were observed on all inoculated seedlings. Uredinia and urediniospores of P. sorghi and P. polysora from seedlings inoculated in the greenhouse were compared directly. All isolates of P. sorghi were confirmed based on 6- to 7-day latent periods, formation of uredinia on both leaf surfaces, and urediniospores that were mostly spherical, cinnamon colored, and moderately echinulate. This is the first widespread occurrence in North America of a biotype of P. sorghi that is virulent on Rp-resistant sweet corn. References: (1) S. H. Hulbert et al. Plant Dis. 75:1130, 1991. (2) J. K. Pataky et al. Purdue Univ. AES Bull. No. 758:99, 1997.


1999 ◽  
Vol 13 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Lee R. Van Wychen ◽  
R. Gordon Harvey ◽  
Mark J. Vangessel ◽  
Thomas L. Rabaey ◽  
David J. Bach

Field studies were conducted at Arlington, WI, in 1996 and 1997 and at Georgetown, DE, and LeSueur, MN, in 1997 to determine weed control efficacy, crop injury, and yield response of PAT-transformed sweet corn to glufosinate-based weed management. Sequential applications of glufosinate 10 to 18 d apart at 0.4 and 0.3 kg ai/ha controlled common lambsquarters, common ragweed, velvetleaf, wild-proso millet, and fall panicum 90% or better at all locations. Weed control varied little among 0.3, 0.4, or 0.3 and 0.3 (sequential) kg/ha glufosinate rates. Glufosinate applied alone, with, or following atrazine controlled velvetleaf 90% or greater but was less consistent on common ragweed and common lambsquarters (73 to 100%). Atrazine plus metolachlor applied preemergence (PRE) and glufosinate applied alone postemergence (POST) provided inconsistent wild-proso millet and fall panicum control (43 to 99%). Metolachlor followed by glufosinate improved consistency of grass control (> 76%). Glufosinate followed by cultivation provided 80% or greater control of velvetleaf and wild-proso millet. Glufosinate did not injure or delay maturity of PAT-transformed sweet corn. Sweet corn treated with glufosinate resulted in yields greater than or equal to the sweet corn that was hand-weeded or received a standard herbicide treatment.


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 502-507 ◽  
Author(s):  
Adam S. Davis ◽  
Martin M. Williams

Bioeconomic models are predicated upon the relationship between weed fecundity and crop yield loss in consecutive growing seasons, yet this phenomenon has received few empirical tests. Residual effects of wild proso millet (WPM) fecundity in sweet corn upon WPM seedling recruitment, weed management efficacy, and crop yield within a subsequent snap bean crop were investigated with field experiments in Urbana, IL, in 2005 and 2006. WPM fecundity in sweet corn showed strong positive associations with WPM seedbank density, seedling recruitment, and demographic transitions within snap bean. A negative exponential relationship between WPM initial seedling density and seedling survival of a single rotary hoe pass indicated that the rotary hoe was ineffective at low weed population densities, but its efficacy increased with increasing weed population density to a maximum of 75% seedling mortality. Efficacy of postemergent chemical control of WPM was unaffected by WPM population density. Path analysis models demonstrated dependence between WPM fecundity in sweet corn, WPM seedling recruitment in snap bean, and reductions in snap bean yield in subsequent growing season, mediated by negative impacts of WPM seedling establishment on snap bean stand. These results underscore the importance of expanding integrated weed management programs to include management of annual weed populations both at the end of their life cycle, by reducing fecundity and seed survival, and at the very beginning of their life cycle, by reducing seedling recruitment and establishment.


1992 ◽  
Vol 6 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Cathy A. Morton ◽  
R. Gordon Harvey

Tolerance of eight processing sweet corn hybrids to nicosulfuron was evaluated in field studies conducted at Arlington, Wis. in 1988 and 1989. Magnitude of sweet corn vigor reduction varied between years. Greater vigor reduction occurred to ‘Jubilee’ sweet corn than to the other seven hybrids. Injury to the hybrids increased as nicosulfuron rate increased. In 1988, some of the hybrids were stunted slightly by all of the herbicide rates, but within a hybrid there was no significant difference among herbicide rates. In 1989 none of the hybrids, including Jubilee, was stunted by even 140 g ai ha–1nicosulfuron compared with the corresponding check. Effects of nicosulfuron on yields of the eight hybrids in 1988 and in 1989 are best described by a quadratic regression equation.


1997 ◽  
Vol 11 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Thomas L. Rabaey ◽  
R. Gordon Harvey

Eleven sweet corn hybrids representing a wide range of injury with imazethapyr in a greenhouse study were evaluated in simulated imazethapyr carryover field studies conducted at Arlington, WI. Imazethapyr at 0, 11, 22, and 44 g ai/ha was applied and incorporated 15 d prior to planting sweet corn. The greatest injury occurred 28 d after planting, with reductions in height ranging from 0 to 25%. Reductions in corn ear yields were similar all years for 10 of the 11 hybrids. Reductions in corn ear yield for ‘Crisp N’ Sweet 710,’ ‘Cornucopia,’ ‘Super Sweet Jubilee,’ ‘Excellency,’ and ‘DMC 20–35′ were less than for ‘Natural Sweet 9000,’ ‘Jubilee,’ ‘Zenith,’ ‘Green Giant 40,’ and ‘Green Giant 97.’ In 1992, plots were prepared for an actual imazethapyr carryover study by applying imazethapyr PPI at 70 and 140 g/ha and planting soybean. In 1993, four sweet corn hybrids were planted. Corn ear yield of Green Giant 97 was reduced following previous-year applications of 140 g/ha imazethapyr. Corn ear yields of Excellency, Super Sweet Jubilee, and Jubilee were not reduced at either actual carryover rate. These studies indicate variability among sweet corn hybrids in susceptibility to imazethapyr. Greenhouse results were indicative of field responses and may be useful as a rapid test to determine hybrid susceptibility.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1154-1154 ◽  
Author(s):  
M. C. Pate ◽  
J. K. Pataky ◽  
W. C. Houghton ◽  
R. H. Teyker

For the past 15 years, the Rp1-D gene has controlled common rust on sweet corn in North America. In August and September 1999, isolates of Puccinia sorghi were collected from Rp1-D sweet corn hybrids in Illinois, Wisconsin, Minnesota, Michigan, and New York. This was the first widespread occurrence in the continental United States of P. sorghi virulent on the Rp1-D gene (1). Isolates of P. sorghi collected from Los Mochis, Mexico, in March 2000 had a pattern of virulence similar to the pattern for the isolates collected in the Midwest in 1999 (2). In April and May 2000, small uredinia were observed on Rp1-D sweet corn in Florida and Texas. In Florida, isolates were collected from six different locations within a 13-km radius near Belle Glade. Three isolates were collected each from Rp1-D and non-Rp sweet corn hybrids. Isolates also were collected from two Rp1-D sweet corn hybrids and a non-Rp sweet corn hybrid near Hondo, TX. Inocula of isolates were increased through one uredinial generation in the greenhouse. Several 1-cm2 pieces of leaf tissue with sporulating uredinia were placed in 15 ml of a solution of water and Tween 20. This inoculum was placed in whorls of five two-leaved seedlings of a susceptible hybrid, ‘Primetime.’ Urediniospores from newly formed uredinia were collected 10 days later and used as inocula to assay each isolate. Two isolates from Florida (one each from an Rp1-D and a non-Rp hybrid) were assayed on a non-Rp susceptible check, 20 different single Rp genes, and nine compound Rp genes. Other isolates were assayed on two replicates of a non-Rp susceptible check, a source of Rp1-D, and five single Rp genes that were effective against the isolates collected from the Midwest in 1999 and from Mexico in 2000. Each experimental unit consisted of five plants grown in 10-cm-diameter pots. Plants at the two-leaf stage were inoculated three times within 5 days by filling whorls with a urediniospore suspension. Rust reactions were rated 10 days after the final inoculation. Isolates collected in Florida from non-Rp hybrids were avirulent on Rp1-D but those collected in Texas from non-Rp hybrids were virulent on Rp1-D. Isolates collected in Florida and Texas from Rp1-D hybrids had a similar pattern of virulence as isolates collected from the Midwest in 1999 and from Mexico in March 2000; that is, effective single Rp genes included Rp1-E, Rp-G, Rp1-I, and Rp1-K. A source that we previously believed was Rp1-L now appears to be Rp-G. These are the first reports from Florida and Texas of P. sorghi virulent on Rp1-D, and they are the first occurrences of virulence against Rp1-D in the continental U.S. in 2000. Apparently, P. sorghi with virulence against Rp1-D has become established in an area where common rust inocula for North America overwinters. References: (1) J. K. Pataky and W. F. Tracy. Plant Dis. 83:1177, 1999. (2) J. K. Pataky et al. Plant Dis. 84:810, 2000.


Sign in / Sign up

Export Citation Format

Share Document