Variation in Wild Proso Millet (Panicum miliaceum) Fecundity in Sweet Corn Has Residual Effects in Snap Bean

Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 502-507 ◽  
Author(s):  
Adam S. Davis ◽  
Martin M. Williams

Bioeconomic models are predicated upon the relationship between weed fecundity and crop yield loss in consecutive growing seasons, yet this phenomenon has received few empirical tests. Residual effects of wild proso millet (WPM) fecundity in sweet corn upon WPM seedling recruitment, weed management efficacy, and crop yield within a subsequent snap bean crop were investigated with field experiments in Urbana, IL, in 2005 and 2006. WPM fecundity in sweet corn showed strong positive associations with WPM seedbank density, seedling recruitment, and demographic transitions within snap bean. A negative exponential relationship between WPM initial seedling density and seedling survival of a single rotary hoe pass indicated that the rotary hoe was ineffective at low weed population densities, but its efficacy increased with increasing weed population density to a maximum of 75% seedling mortality. Efficacy of postemergent chemical control of WPM was unaffected by WPM population density. Path analysis models demonstrated dependence between WPM fecundity in sweet corn, WPM seedling recruitment in snap bean, and reductions in snap bean yield in subsequent growing season, mediated by negative impacts of WPM seedling establishment on snap bean stand. These results underscore the importance of expanding integrated weed management programs to include management of annual weed populations both at the end of their life cycle, by reducing fecundity and seed survival, and at the very beginning of their life cycle, by reducing seedling recruitment and establishment.

Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Martin M. Williams ◽  
Jerald K. Pataky

Maize dwarf mosaic (MDM) stunts corn growth, delays development, and is the most prevalent viral disease of sweet corn grown in many regions of North America and Europe. Although some weeds escape control in most sweet corn fields, the extent to which MDM influences the weed suppressive ability of the crop is unknown. Field studies were conducted over a 3-yr period to characterize the influence of variable MDM incidence in sweet corn on growth, fecundity, and germinability of wild-proso millet, a common weed in the crop. Treatments included five levels of MDM incidence (0, 25, 50, 75, and 100% of plants infected) in two MDM-susceptible hybrids differing in weed suppressive ability. Previous research showed that hybrid ‘Legacy’ had greater weed suppressive ability than ‘Sugar Buns’. Wild-proso millet biomass and fecundity depended largely on the hybrid in which the weed was growing. Wild-proso millet growing in Sugar Buns weighed 45 to 117% more than wild-proso millet in Legacy. Incidence of MDM in sweet corn affected wild-proso millet biomass and fecundity, but only under high weed population densities. When wild-proso millet was observed at 122 plants m−2, weed biomass increased 9 g m−2 for each additional 10% incidence of MDM of sweet corn. Weed suppressive ability of the competitive and less competitive hybrids were influenced to the same extent by MDM. Coupled with a lack of resistance to MDM in two-thirds of commercial sweet corn hybrids, the disease could be an additional factor perpetuating weed growth and fecundity in sweet corn, particularly in fields with high population densities of wild-proso millet.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 437-442 ◽  
Author(s):  
Martin M. Williams ◽  
Rick A. Boydston

Sweet corn is seeded under a wide range of population densities; however, the extent to which variable population density influences weed suppression is unknown. Therefore, field studies were undertaken to quantify the influence of sweet corn seeding level on growth, seed production, and post-harvest seed germination of wild-proso millet, one of the most problematic weeds in the crop. As crop seeding level increased, path analysis results indicated the crop canopy became taller and thicker, resulting in less wild-proso millet biomass, seed production, and germinability. However, at the level of individual fields, reductions in wild-proso millet growth and seed production were modest, at best, between a crop population currently used by growers and a higher crop population known to optimize yield of certain hybrids. These results indicate near-future increases in sweet corn seeding levels may play a minor role in improving weed management in individual sweet corn fields. Nonetheless, a reduction in crop populations, via weather- or management-driven phenomenon, increases risk of greater wild-proso millet seed production.


2022 ◽  
Vol 951 (1) ◽  
pp. 012066
Author(s):  
H Hasanuddin ◽  
G Erida ◽  
S Hafsah ◽  
A Marliah ◽  
Y Agustiawan ◽  
...  

Abstract The appearance of weeds on crops has led to the significant loss of crop yield. Therefore, chemical control with herbicides has been an important tool for rapid and efficient weed management in crops. The objective of this study was to evaluate the effect of herbicides oxyfluorfen and pendimethalin against weeds on soybean plantation. This research employed Randomized Completely Block Design (RCBD) Factorial with 2 factors. The first factor was the type of herbicides: oxyfluorfen and pendimethalin. The second factor was herbicide doses: 0, 500, 1000, 1500 and 2000 g a.i ha-1, applied on soybean at 1 day after planting (DAP). The percentage of weed control, percentage of weed coverage, weed species, weed population, and weed dry weight were observed at 3, 5, 7 and 9 weeks after planting (WAP). The results revealed that different types and doses of herbicide applied has affected the percentage of weed control, percentage of weed coverage weed species and weed dry weight.


2021 ◽  
Vol 26 (4) ◽  
pp. 2751-2758
Author(s):  
EDITA ŠTEFANIĆ ◽  
SLAVICA ANTUNOVIĆ ◽  
BOŽICA JAPUNDŽIĆ-PALENKIĆ ◽  
DINKO ZIMA

Field study tested weed control efficacy, crop yield and economic return using various weed management strategies in sunflower growing with different population density. Treatments included four rates of PRE emergence application of S-metolachlor + fluchloridon and one POST emergence application of flumioxazin + quizalofop-pethyl. PRE-em application (1.4 + 2.4 and 1.2 + 2.0) provided at the higher crop densities (70 000) best weed control. However, PRE- em treatments with lower doses (0.8 + 1.6 and 1.0 + 1.8) and POST- em application did not maintain acceptable control of dominant weeds. Grain yield increased with the crop density, but did not statistically differ between applied herbicide treatments. Finally, the implication of this study demonstrated that sole application of tested herbicide treatments at higher crop sowing density (60 000 and 70 000) was found to be economically the best alternative strategy for reducing weed infestation and achieving a better yield.


1999 ◽  
Vol 13 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Lee R. Van Wychen ◽  
R. Gordon Harvey ◽  
Mark J. Vangessel ◽  
Thomas L. Rabaey ◽  
David J. Bach

Field studies were conducted at Arlington, WI, in 1996 and 1997 and at Georgetown, DE, and LeSueur, MN, in 1997 to determine weed control efficacy, crop injury, and yield response of PAT-transformed sweet corn to glufosinate-based weed management. Sequential applications of glufosinate 10 to 18 d apart at 0.4 and 0.3 kg ai/ha controlled common lambsquarters, common ragweed, velvetleaf, wild-proso millet, and fall panicum 90% or better at all locations. Weed control varied little among 0.3, 0.4, or 0.3 and 0.3 (sequential) kg/ha glufosinate rates. Glufosinate applied alone, with, or following atrazine controlled velvetleaf 90% or greater but was less consistent on common ragweed and common lambsquarters (73 to 100%). Atrazine plus metolachlor applied preemergence (PRE) and glufosinate applied alone postemergence (POST) provided inconsistent wild-proso millet and fall panicum control (43 to 99%). Metolachlor followed by glufosinate improved consistency of grass control (> 76%). Glufosinate followed by cultivation provided 80% or greater control of velvetleaf and wild-proso millet. Glufosinate did not injure or delay maturity of PAT-transformed sweet corn. Sweet corn treated with glufosinate resulted in yields greater than or equal to the sweet corn that was hand-weeded or received a standard herbicide treatment.


2010 ◽  
Vol 24 (4) ◽  
pp. 544-550 ◽  
Author(s):  
Heidi J. Johnson ◽  
Jed B. Colquhoun ◽  
Alvin J. Bussan ◽  
Richard A. Rittmeyer

There is significant interest from processors in producing organic sweet corn and snap bean. However, large-scale production is necessary for this to be a practical and economical venture for processors. This study focused on the feasibility of managing weeds in organic sweet corn and snap bean, utilizing methods that are practical in large hectarage. Tactics such as rotary hoe, interrow cultivation, and a stale seedbed were evaluated alone or in combination. Hand-weeded and herbicide-based treatments were included for each crop for comparison. Percentage weed control, weed biomass, and crop yield were quantified, and net profit was calculated for each treatment. Organic weed management was feasible in snap bean, with yields similar among several of the organic treatments and the herbicide treatment in all 3 yr of the study. Interrow cultivation was the most effective means of organic weed control in snap bean. Organic weed management was possible in snap bean because it is a short-season crop and an effective competitor with weeds in the crop row. Organic weed management was more difficult in sweet corn because of the longer crop season and poor competition with weeds in the crop row. In sweet corn, the organic treatment involving three interrow cultivations was the only one consistently similar in yield to the herbicide treatments. Higher net profits were attained for most of the organic treatments in both crops because of the organic premium. Market saturation and organic premium adjustments are factors for grower consideration in this potential industry, particularly for sweet corn production.


2004 ◽  
Vol 18 (4) ◽  
pp. 962-967 ◽  
Author(s):  
Kristen E. McNaughton ◽  
Peter H. Sikkema ◽  
Darren E. Robinson

Snap bean was evaluated for sensitivity to a number of herbicides in field studies conducted during a 2-yr period in Exeter, ON. Preemergence (PRE) applications of metolachlor (1,600 and 3,200 g ai/ha), imazethapyr (75 and 150 g ai/ha), and clomazone plus metobromuron (840 + 1,000 g ai/ha and 1,680 + 2,000 g/ha) were evaluated for visual injury at 7, 14, and 28 d after emergence. Postemergence (POST) applications of imazamox plus fomesafen (25 + 200 g ai/ha and 50 + 400 g/ha), quizalofop-P (72 and 144 g ai/ha), and clethodim (90 and 180 g ai/ha) also were evaluated for visual injury 7, 14, and 28 d after treatment. Plant height and crop yield were assessed for all treatments. Visual injury, stunting, and yield loss were not observed in the metolachlor treatments. Imazethapyr (150 g/ha) caused stunting and reduced snap bean yield in both study years. Clomazone plus metobromuron (1,680 + 2,000 g/ha) injured and stunted snap bean in both years of the study and reduced yield in 2000. Imazamox plus fomesafen (50 + 400 g/ha) injured snap bean in both years but only reduced yield in 2000. Quizalofop-P injured snap bean but did not reduce plant height or yield. Clethodim did not injure, stunt, or reduce yield of snap bean. Metolachlor (PRE), imazamox plus fomesafen (POST), quizalofop-P (POST), and clethodim (POST) have excellent potential as weed management tools in snap bean in Ontario.


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2019 ◽  
Vol 6 (02) ◽  
Author(s):  
MOHAN SINGH ◽  
OMBIR SINGH ◽  
ROHITASAV SINGH

A field experiment was conducted at the Crop Research Centre of Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Udham Singh Nagar during continuous two years to study the weed flora, yield and nutrient uptake of wheat (Triticum aestivum L.) under different wheat establishment methods in main plots and seven weed management in sub plots. Phalaris minor was the most dominant weed at 60 DAS contributed 55.0 per cent of total weed population. Melilotusindica was the major non grassy weeds in wheat which contributed 11 per cent to total weed population during respective years. Sowing of wheat with zero tillage significantly reduced the Phalaris minor density as compared to conventionally tilled wheat after transplanted rice, 60 per cent Phalaris minor emerged from 0-3 cm in reduced and conventional tillage where as in zero tillage after transplanted rice there was 55 per cent emergence from 0-3 cm layer.The highest grain yield was obtained in two hand weedings done at 30 and 60 DAS and was at par with Isoproturon 1.0 kg ha-1 + Metsulfuron methyl 4 g ha-1 at 30 DAS and Clodinafop – Propargyl 60 g ha-1 at 30 DAS fb. Metsulfuron methyl 4 g ha-1 at 37 DAS. Zero tillage resulted in significantly higher uptake of NPK by wheat plants as compared to conventional tillage, whereas reduced tillage recorded minimum NPK, which was significantly lower over the other treatments of wheat establishment methods.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


Sign in / Sign up

Export Citation Format

Share Document