Managing Volunteer Potato (Solanum tuberosum) in Field Corn with Mesotrione and Arthropod Herbivory

2005 ◽  
Vol 19 (2) ◽  
pp. 443-450 ◽  
Author(s):  
Rick A. Boydston ◽  
Martin M. Williams

Volunteer potato is becoming increasingly detrimental in potato production regions. We assessed methods to manage the weed in field corn with herbicides and arthropod herbivory. In greenhouse trials, new tuber production was reduced at least 95% in ‘Ranger Russet’, ‘Russet Burbank’, ‘Russet Norkotah’, and ‘Shepody’ potato varieties by mesotrione applied at 0.11 kg/ha. In field studies conducted near Paterson, WA, a single application of mesotrione at 0.07 or 0.11 kg/ha applied at the time of tuber initiation (mid-postemergence [MPOST]) controlled potato top growth 96 to 98% in 2002 and 2003. Mesotrione applied at earlier stages of potato growth, preemergence or early postemergence, controlled potatoes less than mesotrione applied MPOST. All herbicide treatments prevented yield loss in field corn compared with nontreated checks. Mesotrione reduced new potato tubers and tuber weight more than any other herbicide. Herbivory of volunteer potato by Colorado potato beetle reduced tuber number 21% and tuber density 23% in the absence of herbicides and appeared to further suppress the weed in combination with herbicides. Whereas treatments containing mesotrione were most effective against volunteer potato, arthropod herbivory supplemented weed suppression and may be an important component in reduced or low-input weed management systems.

Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 1018-1025 ◽  
Author(s):  
Martin M. Williams ◽  
Douglas B. Walsh ◽  
Rick A. Boydston

Few studies have examined the combined effect of herbicide-induced stress and arthropod herbivory to reduce weed fitness. The purpose of this study was to quantify the effect of arthropod herbivory on the herbicide dose–response of a perennial weed. Fluroxypyr dose–response bioassays using volunteer potato were conducted in the presence and absence of Colorado potato beetle (CPB) herbivory. Logistic model parameter estimates for leaf area, shoot biomass, tuber number, and tuber biomass were often lower with herbivory, compared with no herbivory. Greater variance of parameter estimates within herbivory plots was attributed largely to differential feeding because CPB density was not manipulated in the field. Results from short-season field studies (1,000 growing degree days [GDD] after postemergence [POST] herbicide application) indicated that herbivory had the most effect on potato during a period that coincided with high CPB density and optimal temperatures for CPB development. Season-long bioassays (> 3,100 GDD after POST) revealed that addition of herbivory reduced herbicide use 65 to > 85%, compared with the dose needed to achieve the same reduction in tuber production in the absence of herbivory. Integrated weed management systems targeting volunteer potato are more effective when fluroxypyr applications are made before periods of high herbivory. Moreover, this article describes an experimental approach contributing to optimization of combined effects of arthropod herbivory and reduced herbicide doses.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Martin M. Williams ◽  
Rick A. Boydston

Weed management systems in carrot are limited in part by a lack of fundamental understanding of crop–weed interactions. Irrigated field studies were conducted to quantify the effect of volunteer potato density and duration of interference on carrot yield and to determine relationships among weed density, duration of weed growth, and volunteer potato tuber production. A season-long volunteer potato density of 0.06 plants m−2produced from 150 to 230 g tubers m−2and resulted in an estimated 5% crop yield loss. At two volunteer potato plants m−2, the same level of crop loss was estimated with a duration of interference of 430 growing degree days (GDD), a time at which the weed had already produced 130 g tubers m−2. Volunteer potato height at the time of weed removal predicted carrot yield loss (R2= 0.77) and may be useful for timing of management strategies such as hand weeding. Functional relationships describing carrot–volunteer potato interactions provide simple information that is useful for developing weed management recommendations for carrot, a crop that relies on multiple tactics for managing weeds, and rotational crops that are negatively affected by persistence of volunteer potato.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 437-442 ◽  
Author(s):  
Martin M. Williams ◽  
Rick A. Boydston

Sweet corn is seeded under a wide range of population densities; however, the extent to which variable population density influences weed suppression is unknown. Therefore, field studies were undertaken to quantify the influence of sweet corn seeding level on growth, seed production, and post-harvest seed germination of wild-proso millet, one of the most problematic weeds in the crop. As crop seeding level increased, path analysis results indicated the crop canopy became taller and thicker, resulting in less wild-proso millet biomass, seed production, and germinability. However, at the level of individual fields, reductions in wild-proso millet growth and seed production were modest, at best, between a crop population currently used by growers and a higher crop population known to optimize yield of certain hybrids. These results indicate near-future increases in sweet corn seeding levels may play a minor role in improving weed management in individual sweet corn fields. Nonetheless, a reduction in crop populations, via weather- or management-driven phenomenon, increases risk of greater wild-proso millet seed production.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 529C-529
Author(s):  
S.J. Locascio ◽  
A.G. Smajstsrla ◽  
D.H. Hensel ◽  
D.P. Weigartner

Growth and production uniformity of potato (Solanum tuberosum L.) as influenced by conventional seepage irrigation and by subsurface drip irrigation was evaluated in field studies during two seasons in plots 16 rows (18.3 m) wide and 183 m long. Seepage irrigation water was supplied through ditches located on each side of each plot. Drip irrigation water was distributed through buried tubes placed under the beds 6.1 m apart extending the length of the rows. Water application throughout the plots was accomplished more rapidly with the subsurface drip system and water use during the two seasons was 33% less than with the conventional seepage system. Tuber yield during the first season was similar with the two irrigation systems. During the second season, plant growth, tuber development, and tuber yield were sampled on alternate rows beginning on each outside bed, at each end of each plot, and in the middle of the plots. Irrigation method and bed location among the 16 beds had little influence of potato growth and development. With water flow from north to south, plant growth, and tuber yield were significantly higher from potatoes growing at the north end, lowest in the plot center, and intermediate from potatoes growing at the south end. These data indicate that potato production with the two irrigation systems was similar.


2013 ◽  
Vol 27 (3) ◽  
pp. 538-546 ◽  
Author(s):  
Ryan C. Holmes ◽  
Christy L. Sprague

Field studies were conducted in 2010 and 2011 at two locations in Michigan to examine the effect of row width and herbicide combination on weed suppression and yield in the new Type II black bean variety ‘Zorro.' Black bean was planted in 38- and 76-cm rows. Six weed control strategies were examined:S-metolachlor + halosulfuron (PRE),S-metolachlor (PRE) followed by (fb) bentazon + fomesafen (POST), halosulfuron (PRE) fb clethodim (+ fomesafen at one site in one year) (POST), imazamox + bentazon (POST), a weed-free control, and a nontreated control. Weed control and crop injury were evaluated throughout the growing season. In addition, weeds were counted by species in late July, and weed biomass was harvested and weighed at the end of the season. Black bean yield was obtained by direct harvest. Narrow rows reduced weed populations in two of the four site–year combinations (referred to hereafter as site–years), reduced weed biomass in three of the four site–years, and often improved control of upright broadleaf weeds. All herbicide combinations generally reduced weed populations and biomass, but control of specific weeds was variable. Crop injury was generally slight and transient. Yield was greater in narrow rows in two of the four site–years. All herbicide combinations increased yield compared with the nontreated control and resulted in similar yields to one another. Yield and weed suppression was often maximized in narrow rows, while herbicide performance varied by year and weed spectrum.


2011 ◽  
Vol 21 (4) ◽  
pp. 451-460 ◽  
Author(s):  
Renata L. Solan ◽  
Jed B. Colquhoun ◽  
Richard A. Rittmeyer ◽  
Daniel J. Heider

Field trials were conducted at Hancock, WI, in 2008 and 2009 to determine reduced-herbicide weed management programs for ‘Russet Burbank’ and ‘Bannock Russet’ potato (Solanum tuberosum) based on cultivars’ developmental characteristics. Six treatments applied to each cultivar included: preemergence (PRE) broadcast s-metolachlor and metribuzin (the industry standard); PRE in-row banded s-metolachlor and metribuzin with cultivation at 15% canopy development; postemergence (POST) broadcast rimsulfuron and metribuzin; POST between-row banded glyphosate; POST in-row banded rimsulfuron and metribuzin with cultivation at 15% canopy development; and cultivation alone at 15% canopy development. In 2008 and 2009, for both cultivars, visual assessments indicated weed suppression was reduced when glyphosate was POST between-row banded, compared with other treatments, and weed suppression was consistently high when rimsulfuron and metribuzin were POST broadcast. As expected, in-row weed control was consistently poor when glyphosate was between-row POST banded, providing no in-row weed control. Regardless of cultivar or year, in-row weed control was comparable to or better than the industry standard when herbicides were broadcast or in-row banded with cultivation at 15% canopy development. Potato yield was poor when glyphosate was POST between-row banded and when cultivation was used without herbicide application. Yield was consistently high when herbicides were POST broadcast, which provided no reduction in treated area from the industry standard of PRE broadcast. In both years, ‘Russet Burbank’ yield was greatest when herbicides were POST in-row banded with cultivation at 15% canopy development; ‘Bannock Russet’ yield was greatest when herbicides were PRE in-row banded with cultivation at 15% canopy development. Cultivar-appropriate weed management systems that band herbicides over the crop row in combination with cultivation would provide a two-thirds decrease in herbicide application from the industry standard without risk of yield loss.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fuqiang Li ◽  
Haoliang Deng ◽  
Yucai Wang ◽  
Xuan Li ◽  
Xietian Chen ◽  
...  

AbstractThe effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


2021 ◽  
pp. 1-22
Author(s):  
Marcelo L. Moretti

Abstract Italian ryegrass has become a problematic weed in hazelnut orchards of Oregon because of the presence of herbicide-resistant populations. Resistant and multiple-resistant Italian ryegrass populations are now the predominant biotypes in Oregon; there is no information on which herbicides effectively control Italian ryegrass in hazelnut orchards. Six field studies were conducted in commercial orchards to evaluate Italian ryegrass control with POST herbicides. Treatments included flazasulfuron, glufosinate, glyphosate, paraquat, rimsulfuron, and sethoxydim applied alone or in selected mixtures during early spring when plants were in the vegetative stage. Treatment efficacy was dependent on the experimental site. The observed range of weed control 28 d after treatment was 13 to 76 % for glyphosate, 1 to 72% for paraquat, 58 to 88% for glufosinate, 16 to 97 % for flazasulfuron, 8 to 94% for rimsulfuron, and 25 to 91% for sethoxydim. Herbicides in mixtures improved control of Italian ryegrass compared to single active ingredients based on contrast analysis. Herbicides in mixture increased control by 27% compared to glyphosate, 18% to rimsulfuron, 15% to flazasulfuron, 19% to sethoxydim, and 12% compared to glufosinate when averaged across all sites, but mixture not always improved ground coverage of biomass reduction. This complex site-specific response highlights the importance of record-keeping for efficient herbicide use. Glufosinate is an effective option to manage Italian ryegrass. However, the glufosinate-resistant biotypes documented in Oregon may jeopardize this practice. Non-chemical weed control options are needed for sustainable weed management in hazelnuts.


Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


1998 ◽  
Vol 12 (1) ◽  
pp. 32-36 ◽  
Author(s):  
William G. Johnson ◽  
Jeffrey S. Dilbeck ◽  
Michael S. Defelice ◽  
J. Andrew Kendig

Field studies were conducted at three locations in 1993 and 1994 to evaluate weed control and crop response to combinations of glyphosate, metolachlor, 0.5 X and 1 X label rates of chlorimuron plus metribuzin applied prior to planting (PP), and 0.5 X and 1 X label rates of imazethapyr applied early postemergence (EPOST) or postemergence (POST) in no-till narrow-row soybean production. Giant foxtail densities were reduced with sequential PP followed by (fb) EPOST or POST treatments. Large crabgrass was reduced equivalently with all herbicide combinations involving chlorimuron plus metribuzin PP fb imazethapyr. Common cocklebur control was variable but was usually greater with treatments that included imazethapyr. Ivyleaf morningglory densities were not reduced with any herbicide combinations. Sequential PP fb EPOST or POST treatments tended to provide slightly better weed suppression than PP-only treatments, but the difference was rarely significant. Soybean yields with treatments utilizing 0.5 X rates were usually equal to 1 X rates.


Sign in / Sign up

Export Citation Format

Share Document