Glyphosate Application Timings in Twin- and Single-row Corn and Soybean Spacings

2007 ◽  
Vol 21 (1) ◽  
pp. 186-190 ◽  
Author(s):  
Kelly A. Nelson

Field research was conducted in 2002 and 2003 to determine the effect of twin- and single-row spacing and POST glyphosate application timing on light interception, weed control, and grain yield of glyphosate-resistant corn and soybean. Row spacing did not affect light interception measured 10 to 11 wk after planting. Corn grain yield in 2002 was 1.0 Mg/ha higher in single rows compared with twin rows when averaged over glyphosate timing, but was unaffected by row spacing in 2003. Soybean grain yield was similar in 19- and 38-cm single rows, and single-row grain yield was 0.2 to 0.4 Mg/ha higher than the twin-row spacing. Corn grain yields were similar to the weed-free control when glyphosate was applied to weeds 10 to 15 cm tall in 2002 and 10 cm tall in 2003. Soybean yield was maximized by application of glyphosate to weeds 15 to 30 cm tall in 2002 and 60 cm tall in 2003.

1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 903-910
Author(s):  
Gail A. Wicks ◽  
Robert G. Wilson ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Field studies were conducted to determine the influence of annual herbicide treatments plus cultivation on weed populations and corn yields in ridge-till corn during a 3-yr period at Mitchell, NE, and a 7-yr period at North Platte, NE. When the experiment was initiated at North Platte, no weeds were present before corn planting. It took 4 yr before triazine-resistant kochia became a problem before corn planting in plots treated with atrazine, but these were controlled by other operations prior to corn harvest. In the cultivated check, green foxtail densities before harvest increased from 0 in 1985 to 32 plants 100 m−2in 1991. Annual applications of dicamba plus 2,4-D 10 d early preplant followed by cultivation controlled triazine-resistant kochia and velvetleaf, but common lambsquarters, nightshade species, and green foxtail increased. Volunteer corn was controlled with cultivation. After 3 yr at Mitchell, the annual weed population increased 10-fold in the cultivated check. Thus, corn yields were reduced 64% with two cultivations compared with an annual early preplant application of dicamba plus 2,4-D followed by alachlor plus cyanazine PRE and two cultivations. With two cultivations under low annual weed populations at North Platte, grain yield from the cultivated check treatment was not different from annual treatments of herbicides after 7 yr. Metolachlor plus atrazine occasionally caused a reduction in corn grain yields.


Weed Science ◽  
1968 ◽  
Vol 16 (2) ◽  
pp. 232-234 ◽  
Author(s):  
K. P. Buchholtz ◽  
R. E. Doersch

Corn (Zea mays L.) plots receiving broadcast spray applications of triazine herbicides without cultivation yielded as much as plots receiving the standard two cultivations for weed control. One cultivation resulted in an average 6% increase in corn grain yield on herbicide treated plots. This yield increase probably was due to improved weed control. Weed growth reduced grain yields an average of 1.23 bu/A for each 100 lb/A of dry weeds. In some experiments, increases in corn yield due to improved weed control by cultivation on plots treated with herbicides were less than increases expected based on weed growth reductions. This disparity may have been due to injury to the corn by cultivation.


2017 ◽  
Vol 155 (9) ◽  
pp. 1394-1406 ◽  
Author(s):  
X. M. MAO ◽  
W. W. ZHONG ◽  
X. Y. WANG ◽  
X. B. ZHOU

SUMMARYThe production of winter wheat (Triticum aestivum L.) is affected by crop population structures and field microclimates. This 3-year study assessed the effect of different precision planting patterns and irrigation conditions on relative humidity (RH), air and soil temperature within the canopy, intercepted photosynthetically active radiation (iPAR), evapotranspiration (ET), water productivity (WP) and grain yields. Field experiments were conducted from 2011 to 2014 on a two-factor split-plot design with three replicates. The experiments involved three precision planting patterns (single row, alternating single and twin rows [hereafter ‘single–twin’] and twin row) and three irrigation treatments (0 mm (I0), 90 mm (I90) and 180 mm (I180)). Planting patterns and irrigation treatments exerted a significant effect on RH, air and soil temperature, iPAR, ET, WP and grain yield. The lowest RH and iPAR levels were detected in the single row pattern. When the irrigation treatment was identical, the highest soil and air temperatures were detected in the single row pattern, followed by the single–twin row and twin row patterns. Compared with the single row, the single–twin and twin row patterns increased ET by 0·3 and 1·4, WP by 4·7 and 5·7% and yields by 6·0 and 7·9%, respectively. Compared with I0, the I90 and I180 irrigation treatments increased ET by 0·3 and 1·4%, and WP by 4·7 and 5·7%, respectively. The grain yields of the twin row pattern were 5·8 and 1·7% higher than those of the single row and single–twin row patterns, respectively. Compared with I0, I90 increased yield by 19·3%. The twin row pattern improved crop structure and farmland microclimate by increasing RH and iPAR, and reducing soil and air temperatures, thus increasing grain yield. These results indicated that a twin row pattern effectively improved grain yield at I0. On the basis of iPAR, WP and grain yield, it was concluded that a twin row pattern combined with an I90 irrigation treatment provided optimal cropping conditions for the North China plain.


2014 ◽  
Vol 6 (4) ◽  
pp. 188 ◽  
Author(s):  
Joseph Adigun ◽  
A. O. Osipitan ◽  
Segun Toyosi Lagoke ◽  
Raphael Olusegun Adeyemi ◽  
Stephen Olaoluwa Afolami

Weed problem appears to be the most deleterious factor causing between 25 and 60% reduction in potential yield of cowpea. Field trials were therefore conducted to study the effect of inter-row spacing and period of weed interference on growth and yield of cowpea (Vigna unguiculata (L) Walp) at the Teaching and Research Farm of the Federal University of Agriculture, Abeokuta (07° 15'; 03° 25' E) in South Western Nigeria during the early and late wet seasons of 2009. The experiment consisted of eight main plots of weed interference which included initial weed removal for 3, 6, 9, and 12 weeks after sowing (WAS) and subsequently weed –infested until harvest as well as initial weed infestation for corresponding periods and thereafter kept weed free until harvest. There were also sub-plot treatments of three inter-row spacing of 60, 75, and 90 cm. All treatments in different combinations were laid out in a split-plot design with three replications. In both trials, the use of inter-row spacing of 60 cm resulted in significant reduction in weed growth as evident in lower weed dry matter production and subsequent higher cowpea pod and grain yields than those of 75 and 90 cm inter-row spacing. Initial weed infestation of up to 3 WAS did not have any adverse effect on crop growth and cowpea grain yields provided the weeds were subsequently removed. On the other hand, cowpea grain yield loss was not significantly averted by keeping the crop weed free for only 3 WAS without subsequent weed removal. In this study, initial weed-infestation for 6 WAS and beyond significantly depressed various crop growth parameter and cowpea grain yield compared with the crop kept weed free throughout its life cycle. In order to obtain optimum yields similar to that of the weed free cowpea field, it was required to keep the crop weed free for 6 WAS and beyond. However, frequent weeding beyond 9 weeks after sowing did not improve cowpea yield significantly and as a matter of fact it may even result in reduction of cowpea grain yield due to mechanical damage of hoe weeding. The practical implication of this finding is that early weeding starting from 3 WAS is very crucial for cowpea production while the critical period of weed removal for optimum yield in cowpea is between 3 and 9 WAS in the forest-savannah transitional zone of south Western Nigeria.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1034D-1034 ◽  
Author(s):  
Charles L. Webber ◽  
James W. Shrefler

Producers and researchers are interested in pelargonic acid (nonanoic acid) as a broad-spectrum postemergence or burn-down herbicide. Pelargonic acid is a fatty acid naturally occurring in many plants and animals, and present in many foods we consume. The objective of this research was to determine the effect of pelargonic acid concentration, adjuvants, and application timing on weed control efficacy as a burn-down herbicide. Field research was conducted at Lane, Okla. (southeast Oklahoma), during the 2005 growing season. One month prior to spraying the weed control treatments, the land was cultivated to kill the existing weeds and provide a uniform seed bed for new weed growth. The factorial weed control treatments included three application concentrations of Scythe (57.0% pelargonic acid) applied at 3%, 6.5%, and 10%; three adjuvants (none, orange oil, and non-ionic surfactant); and two application dates. All herbicide treatments were applied with an application volume of 935 L/ha to seedling weeds. The experiment had a high weed density with multiple species of grass and broadleaf weeds. Weed control across species increased as the herbicide concentrations increased from 0% to 10%. At all concentrations applied, pelargonic acid produced greater weed control for a longer time period for the broadleaf weeds than the grass weeds. Visual damage to the weeds was often apparent within a few hours after application. There was a significant increase in weed control when applied to the younger weeds. In this research, pelargonic acid was effective in controlling both broadleaf and grass weeds as a burn-down herbicide, although crabgrass was tougher to control.


2021 ◽  
Vol 37 ◽  
pp. e37042
Author(s):  
Marcelo De Almeida Silva ◽  
Ana Carolina De Santana Soares ◽  
Melina Rodrigues Alves Carnietto ◽  
Alexandrius De Moraes Barbosa

Studies addressing the interaction of different spatial arrangement in soybean are needed in order to achieve management that leads to higher grain yield associated with rational seed use. The objective of this work was to evaluate the yield components and productivity of an undetermined growth type soybean as a function of different row spacing and plant densities. The treatments consisted of three row spaces (0.25, 0.35 and 0.45 m) and three plant population densities (30, 40 and 50 plants/m²). There was no interaction of row spaces and plant population on soybean yield. Regarding the overall spacing average, the grain yield of the population of 30/m² plants was higher than the productivity of the populations of 40 and 50/m² plants. The largest populations reduce plant sizes due to greater competition between plants. In addition, smaller populations promote higher individual plant yields due to the increase components of the production. This characteristic is defined as the ability of the plant to change its morphology and yield components in order to adapt to the conditions imposed by the spatial arrangement.


Sign in / Sign up

Export Citation Format

Share Document