Rice (Oryza sativa) Response and Annual Grass Control with Graminicides

2006 ◽  
Vol 20 (3) ◽  
pp. 738-744 ◽  
Author(s):  
Nathan W. Buehring ◽  
Ronald E. Talbert ◽  
Ford L. Baldwin

Field studies were conducted to evaluate rice injury and control of propanil-resistant and -susceptible (natural infestation) barnyardgrass, broadleaf signalgrass, and Amazon sprangletop with BAS 625, cyhalofop, and fenoxaprop plus the safener isoxadifen in rice. BAS 625 at 100 g ai/ha applied to two- to three-leaf rice resulted in 19 to 72% injury in three of four experiments. Fenoxaprop plus isoxadifen at 90 + 98 g ai/ha injured rice 11 to 31%, and cyhalofop at 280 g ai/ha consistently resulted in minimal rice injury. The most effective control (84 to 99%) of propanil-resistant and propanil-susceptible barnyardgrass across all experiments was achieved with sequential applications of the BAS 625 at 75 and 100 g ai/ha, cyhalofop at 210 and 280 g ai/ha, and fenoxaprop plus isoxadifen at 68 + 74 and 90 + 98 g ai/ha. When the graminicides were applied to four- to six-leaf rice (one tiller), propanil-resistant and propanil-susceptible barnyardgrass control was generally very poor. Fenoxaprop plus isoxadifen controlled broadleaf signalgrass 91 to 100%, even when applied once to four- to six-leaf rice. BAS 625 at 75 and 100 g ai/ha and cyhalofop at 210 and 280 g ai/ha applied sequentially provided consistent broadleaf signalgrass control (≥98%). Amazon sprangletop control was good (85 to 99%) with fenoxaprop plus isoxadifen at 45 + 49, 68 + 74, and 90 + 98 g ai/ha (applied in a single application or sequentially), BAS 625 at 100 g ai/ha applied to two- to three-leaf and four- to six-leaf rice or 50, 75, and 100 g ai/ha applied sequentially, and cyhalofop at 140, 210, and 280 g ai/ha applied to two- to three-leaf rice or sequentially.

Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 727-729 ◽  
Author(s):  
Tony Driver ◽  
Lawrence R. Oliver

Field studies were conducted in 1981 to 1983 to evaluate selected herbicides for control of a natural infestation of woolly croton (Croton capitatusMichx. ♯ CVNCP) in soybean [Glycine max(L.) Merr.]. Ineffective woolly croton control was obtained with all preemergence herbicides evaluated. Early postemergence treatments of acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} and lactofen {1-(carboethoxy)ethyl) 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate} provided excellent woolly croton control. Postdirected applications of oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] applied at the V4 stage of soybean growth and tank mixes of cyanazine {2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl] amino]-2-methylpropanenitrile}, linuron [N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea], or metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] plus 2,4-DB [4-(2,4-dichlorophenoxy)butyric acid] applied at the V4 and repeated at the V6 stage of soybean growth also provided effective control.


1998 ◽  
Vol 130 (6) ◽  
pp. 825-836 ◽  
Author(s):  
I.L. Wise ◽  
R.J. Lamb

AbstractPlant bugs in the genus Lygus infest canola (Brassica napus L. and Brassica rapa L.) when the crop is producing buds, flowers, and pods. Field studies in cages and open plots show that plant bugs can reduce yield by 20% or more, but have little effect on seed size. A single application of a foliar insecticide when the crop has finished flowering and is beginning to produce pods will prevent most or all of the yield loss. The yield loss of canola that can be prevented by control is 0.007 t/ha per plant bug per 10 sweeps sampled at the end of flowering or the beginning of pod formation. The yield loss that can be prevented by a later application drops to 0.005 t/ha. When precipitation is greater than 100 mm from the onset of bud formation to the end of flowering, the crop may partially compensate for plant bug damage. The economic threshold for control of plant bugs in canola at the end of flowering or at the beginning of pod formation is 15 plant bugs per 10 sweeps, based on crop prices and control costs from 1989 to 1992. If plant bugs are present but control is not warranted when most flowering is complete, plant bug densities should be assessed again 5–7 days later as pods develop, but at this stage the threshold is 20 plant bugs per 10 sweeps. The use of economic thresholds for chemical control of plant bugs will maximize seed yield and minimize unnecessary or ineffectively timed insecticide applications.


2019 ◽  
Vol 34 (4) ◽  
pp. 498-505
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

AbstractRice with enhanced tolerance to herbicides that inhibit acetyl coA carboxylase (ACCase) allows POST application of quizalofop, an ACCase-inhibiting herbicide. Two concurrent field studies were conducted in 2017 and 2018 near Stoneville, MS, to evaluate control of grass (Grass Study) and broadleaf (Broadleaf Study) weeds with sequential applications of quizalofop alone and in mixtures with auxinic herbicides applied in the first or second application. Sequential treatments of quizalofop were applied at 119 g ai ha−1 alone and in mixtures with labeled rates of auxinic herbicides to rice at the two- to three-leaf (EPOST) or four-leaf to one-tiller (LPOST) growth stages. In the Grass Study, no differences in rice injury or control of volunteer rice (‘CL151’ and ‘Rex’) were detected 14 and 28 d after last application (DA-LPOST). Barnyardgrass control at 14 and 28 DA-LPOST with quizalofop applied alone or with auxinic herbicides EPOST was ≥93% for all auxinic herbicide treatments except penoxsulam plus triclopyr. Barnyardgrass control was ≥96% with quizalofop applied alone and with auxinic herbicides LPOST. In the Broadleaf Study, quizalofop plus florpyrauxifen-benzyl controlled more Palmer amaranth 14 DA-LPOST than other mixtures with auxinic herbicides, and control with this treatment was greater EPOST compared with LPOST. Hemp sesbania control 14 DA-LPOST was ≤90% with quizalofop plus quinclorac LPOST, orthosulfamuron plus quinclorac LPOST, and triclopyr EPOST or LPOST. All mixtures except quinclorac and orthosulfamuron plus quinclorac LPOST controlled ivyleaf morningglory ≥91% 14 DA-LPOST. Florpyrauxifen-benzyl or triclopyr were required for volunteer soybean control >63% 14 DA-LPOST. To optimize barnyardgrass control and rice yield, penoxsulam plus triclopyr and orthosulfamuron plus quinclorac should not be mixed with quizalofop. Quizalofop mixtures with auxinic herbicides are safe and effective for controlling barnyardgrass, volunteer rice, and broadleaf weeds in ACCase-resistant rice, and the choice of herbicide mixture could be adjusted based on weed spectrum in the treated field.


1974 ◽  
Vol 50 (5) ◽  
pp. 181-185 ◽  
Author(s):  
Andrew Radvanyi

Live trapping and tagging methods were employed to assess small mammal populations within two hardwood plantations in southern Ontario. Excessive girdling damage in past years to young planted trees necessitated an evaluation of rodent populations and development of effective control measures. The application of an anticoagulant rodenticide to oat groats bait broadcast over the study area at an ingredient cost of approximately three dollars per acre virtually wiped out the small mammals. Reinvasion from surrounding areas was, however, fairly rapid, particularly during late summer. Further research on longer term control measures using poisoned bait feeder stations is recommended.


1985 ◽  
Vol 43 (6) ◽  
pp. 349-357 ◽  
Author(s):  
Jolán Bánóczy ◽  
Arje Scheinin ◽  
Róbert Pados ◽  
Gyöngyi Ember ◽  
Palma Kertész ◽  
...  

2017 ◽  
Vol 31 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Maxwel C. Oliveira ◽  
Amit J. Jhala ◽  
Todd Gaines ◽  
Suat Irmak ◽  
Keenan Amundsen ◽  
...  

Field and greenhouse experiments were conducted in Nebraska to (1) confirm the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting resistant-waterhemp biotype (HPPD-RW) by quantifying the resistance levels in dose-response studies, and (2) to evaluate efficacy of PRE-only, POST-only, and PRE followed by POST herbicide programs for control of HPPD-RW in corn. Greenhouse dose-response studies confirmed that the suspected waterhemp biotype in Nebraska has evolved resistance to HPPD-inhibiting herbicides with a 2- to 18-fold resistance depending upon the type of HPPD-inhibiting herbicide being sprayed. Under field conditions, at 56 d after treatment, ≥90% control of the HPPD-RW was achieved with PRE-applied mesotrione/atrazine/S-metolachlor+acetochlor, pyroxasulfone (180 and 270 g ai ha−1), pyroxasulfone/fluthiacet-methyl/atrazine, and pyroxasulfone+saflufenacil+atrazine. Among POST-only herbicide programs, glyphosate, a premix of mesotrione/atrazine tank-mixed with diflufenzopyr/dicamba, or metribuzin, or glufosinate provided ≥92% HPPD-RW control. Herbicide combinations of different effective sites of action in mixtures provided ≥86% HPPD-RW control in PRE followed by POST herbicide programs. It is concluded that the suspected waterhemp biotype is resistant to HPPD-inhibiting herbicides and alternative herbicide programs are available for effective control in corn. The occurrence of HPPD-RW in Nebraska is significant because it limits the effectiveness of HPPD-inhibiting herbicides.


2019 ◽  
Vol 23 (2) ◽  
pp. 163
Author(s):  
Syahri Syahri ◽  
Renny Utami Somantri ◽  
Priatna Sasmita

Burkholderia glumae, before mid-2018, is categorized as plant quarantine pest A2 Group 1 that its existence has been detected in Indonesia. B. glumae  has been known to spread in the central production of rice in Java, Sumatra, Borneo dan Sulawesi. This review aimed to explain the strategies for B. glumae detection through its characteristics and to prevent the divergence  of this bacterium in Indonesia. The previous studies reported that the bacteria could reduce yield up to 75% and caused the decrease  of weight-grain or the increase  of empty grain. The disease intensity is affected by environmental and physiological factors such as warm temperature at nighttime and high rainfall intensity. The optimum temperature for the development of the disease is 30–35°C. Moreover, the pathogen could survive at a temperature of 41°C. The tropical area of 32-36°C are suitable for B. glumae. Recently, the effective control of the disease in the field has not been found yet. Meanwhile, early detection of the disease is not yet determined,  even though  it is necessary  to prevent its spread in rice cultivation in Indonesia. Detection of the disease by Agricultural Quarantine Agency as a frontline is needed to check the entry of the disease carried by the import activities of the seed. Detection in the suspected field by protection institutes through frequent surveillance in central production areas of rice should be considered  as an important task.. The effective techniques to prevent B. glumae are the use of resistant varieties, the practice of seed treatments (using antibacterial, bactericide, heat treatment or plant extract), and  the application of oxolinic acid to the crops.


2017 ◽  
Author(s):  
Timo Smieszek ◽  
Gianrocco Lazzari ◽  
Marcel Salathé

ABSTRACTThere is increasing evidence that aerosol transmission is a major contributor to the spread of influenza. Despite this, virtually all studies assessing the dynamics and control of influenza assume that it is transmitted solely through direct contact and large droplets, requiring close physical proximity. Here, we use wireless sensors to measure simultaneously both the location and close proximity contacts in the population of a US high school. This dataset, highly resolved in space and time, allows us to model both droplet and aerosol transmission either in isolation or in combination. In particular, it allows us to computationally assess the effectiveness of overlooked mitigation strategies such as improved ventilation that are available in the case of aerosol transmission. While the effects of the type of transmission on disease outbreak dynamics appear to be weak, we find that good ventilation could be as effective in mitigating outbreaks as vaccinating the majority of the population. In simulations using empirical transmission levels observed in households, we find that bringing ventilation to recommended levels has the same mitigating effect as a vaccination coverage of 50% to 60%. Our results therefore suggest that improvements of ventilation in public spaces could be an important and easy-to-implement strategy supplementing vaccination efforts for effective control of influenza spread.


2008 ◽  
Vol 13 (30) ◽  
Author(s):  
P Follin ◽  
L Dotevall ◽  
M Jertborn ◽  
Y Khalid ◽  
J Å Liljeqvist ◽  
...  

In January-February 2008, one imported case of measles initiated a series of exposures with around 380 nosocomial secondary contacts. Susceptible individuals were traced early and control measures were initiated that managed to limit the consequences considerably. Only four secondary cases were identified by the end of March. This minor outbreak illustrates the importance and efficiency of early control measures as well as the fact that the risk of measles outbreaks still exists in a country that has high measles, mumps, rubella vaccination coverage among children.


2012 ◽  
Vol 184-185 ◽  
pp. 1521-1525
Author(s):  
Yu En Wu ◽  
Yu Hui Hu ◽  
Ya Ying Jin ◽  
Jun Qiang Xi

A CAN-Bus protocol analysis and verification method with three key aspects which are static analysis, dynamic analysis and verification &control is put forward. Static analysis ascertains the communication information of each node by bus residual method; Synchronous contrast method is put in use to obtain practical and effective control protocol in the dynamic analysis; Verification &control is to verify the correctness of the analytical protocol and to achieve the control of the critical subsystems by bus gateway system. This scheme has been used to analyze a foreign parallel hybrid powertrain system, and it proves the correctness of the designed static analysis and dynamic analysis, the applicability of verification &control.


Sign in / Sign up

Export Citation Format

Share Document