Comparison of Trifloxysulfuron and Pyrithiobac in Glyphosate-Resistant and Bromoxynil-Resistant Cotton

2005 ◽  
Vol 19 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Jeffrey W. Branson ◽  
Kenneth L. Smith ◽  
James L. Barrentine

Field studies were conducted in 2000 and 2001 at Rohwer, AR. Trifloxysulfuron (5.3 and 8 g ai/ha) and pyrithiobac (70 g ai/ha) were applied preemergence (PRE) and postemergence (POST) broadcast at the two- to three-leaf (EP) and three- to four-leaf (MP) cotton growth stages. Both materials were also applied POST in combination with glyphosate at 560 g ae/ha or bromoxynil at 560 g ai/ha at both growth stages. Trifloxysulfuron applied EP or MP at 8 g/ha provided greater control of sicklepod and pitted morningglory 28 d after application (DAA) than trifloxysulfuron at 5.3 g/ha or pyrithiobac at 70 g/ha; however, control of prickly sida was greater with pyrithiobac than with trifloxysulfuron at either rate. Glyphosate alone controlled sicklepod, prickly sida, and pitted morningglory greater than 80%. The addition of trifloxysulfuron at 8 g/ha and pyrithiobac at 70 g/ ha increased control of all species over glyphosate alone 28 DAA. Bromoxynil at 560 g/ha controlled pitted morningglory and hemp sesbania at all application timings; however, sicklepod and Palmer amaranth control was less than 50% with bromoxynil applied alone. When bromoxynil was applied in combination with trifloxysulfuron at either rate, control of sicklepod and Palmer amaranth increased to 80% or greater at all application timings. Trifloxysulfuron has the potential to complement both the glyphosate-resistant and bromoxynil-resistant weed control programs by providing control of less susceptible weeds and by providing residual control to both programs.

1992 ◽  
Vol 6 (3) ◽  
pp. 526-534 ◽  
Author(s):  
Charles A. King ◽  
Lawrence R. Oliver

Data from field studies at Fayetteville, AR, were used to predict the herbicide rate needed to provide 70, 80, or 90% control of a weed based upon weed age. Reduced herbicide rates generally needed to be applied within 6 to 12 d after emergence to control weeds 90%. Reduced rates (280 g ai ha–1or less) of acifluorfen controlled hemp sesbania, smooth pigweed, Palmer amaranth, and pitted and entireleaf morningglory 90%. Bentazon at 350 to 650 g ai ha–1controlled common cocklebur and prickly sida 90%. Common cocklebur, smooth pigweed, and pitted morningglory were controlled 90% with chlorimuron at 2 to 5 g ai ha–1and imazaquin at 20 to 80 g ai ha–1. Prickly sida and hemp sesbania were controlled 90% with imazaquin at 70 g ha–1and chlorimuron at 6 g ha–1, respectively. Barnyardgrass, large crabgrass, red rice, and sicklepod were not controlled with reduced herbicide rates.


2007 ◽  
Vol 21 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Clifford H. Koger ◽  
Ian C. Burke ◽  
Donnie K. Miller ◽  
J. Andrew Kendig ◽  
Krishna N. Reddy ◽  
...  

Field and greenhouse studies were conducted to investigate the compatibility of MSMA in a tank mixture with glyphosate or glufosinate for broadleaf and grass weed control. Glyphosate, glufosinate, and MSMA were evaluated at 0.5×, 1×, and 2× rates, with 1× rates of 0.84 kgae/ha, 0.5 kgai/ha, and 2.2 kgai/ha, respectively. Glyphosate and glufosinate provided similar levels of control for most weed species and were often more efficacious than MSMA alone. Glyphosate controlled Palmer amaranth better than glufosinate. Glufosinate controlled hemp sesbania, pitted morningglory, and ivyleaf morningglory better than glyphosate at one location. Weed control was not improved with the addition of MSMA to glyphosate or glufosinate when compared with either herbicide alone. MSMA antagonized glyphosate efficacy on barnyardgrass, browntop millet, hemp sesbania, Palmer amaranth, and redroot pigweed. MSMA antagonized glufosinate efficacy on browntop millet, hemp sesbania, ivyleaf morningglory, johnsongrass, Palmer amaranth, pitted morningglory, prickly sida, redroot pigweed, and velvetleaf. Antagonism of glyphosate or glufosinate by MSMA was often overcome by applying the 2× rate of either herbicide alone. MSMA is not a compatible tank-mixture partner with glyphosate or glufosinate for weed control in cotton.


2004 ◽  
Vol 18 (3) ◽  
pp. 698-703 ◽  
Author(s):  
Joseph H. Pankey ◽  
James L. Griffin ◽  
B. Rogers Leonard ◽  
Donnie K. Miller ◽  
Robert G. Downer ◽  
...  

Field studies were conducted to evaluate weed control with combinations of glyphosate at 750 g ae/ha and the insecticides acephate (370 g ai/ha), dicrotophos (370 g ai/ha), dimethoate (220 g ai/ha), fipronil (56 g ai/ha), imidacloprid (53 g ai/ha), lambda-cyhalothrin (37 g ai/ha), oxamyl (280 g ai/ha), or endosulfan (420 g ai/ha) and insect control with coapplication of the herbicide with insecticides acephate, dicrotophos, dimethoate, and imidacloprid. Applying lambda-cyhalothrin or fipronil with glyphosate reduced control of hemp sesbania by 19 and 9 percentage points, respectively, compared with glyphosate alone. Acephate, dicrotophos, dimethoate, imidacloprid, lambda-cyhalothrin, oxamyl, and endosulfan did not affect hemp sesbania, pitted morningglory, prickly sida, and redweed control by glyphosate. Lambda-cyhalothrin and fipronil did not affect glyphosate control of weeds other than hemp sesbania. Addition of glyphosate to dicrotophos improved cotton aphid control 4 d after treatment compared with dicrotophos alone. Thrips control was improved with addition of glyphosate to imidacloprid. Insect control was not reduced by glyphosate regardless of insecticide.


1988 ◽  
Vol 2 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Jerome M. Green ◽  
Timothy T. Obrigawitch ◽  
James D. Long ◽  
James M. Hutchison

Metribuzin and the ethyl ester of chlorimuron were evaluated alone and in combination for preemergence broadleaf weed control in soybeans. Neither herbicide alone controlled all broadleaf weeds tested, but combinations showed both complementary and additive action. Two field studies quantified these interactions on broadleaf weeds and showed that low rates of either herbicide alone controlled Pennsylvania smartweed and redroot pigweed. Metribuzin was more effective than chlorimuron in controlling prickly sida and hemp sesbania, while chlorimuron was more effective on common cocklebur, sicklepod, and ivyleaf and pitted morningglories. Additive action was most important on velvetleaf, sicklepod, annual morningglories, and hemp sesbania. Because the components were both additive and complementary, a range of mixture rates and ratios were more effective for weed control than either herbicide alone.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2004 ◽  
Vol 18 (4) ◽  
pp. 1018-1022 ◽  
Author(s):  
Joyce Tredaway Ducar ◽  
John W. Wilcut ◽  
John S. Richburg

Field studies were conducted in 1992 and 1993 to evaluate imazapic alone and in postemergence (POST) mixtures with atrazine or bentazon for weed control in imidazolinone-resistant corn treated with carbofuran. Nicosulfuron and nicosulfuron plus atrazine also were evaluated. Imazapic at 36 and 72 g ai/ha controlled large crabgrass 85 and 92%, respectively, which was equivalent to control obtained with nicosulfuron plus atrazine. Imazapic at the higher rate controlled large crabgrass better than nicosulfuron alone. Imazapic at 36 and 72 g/ha controlled Texas panicum 88 and 99%, respectively, and at the higher rate control was equivalent to that obtained with nicosulfuron alone or in mixture with atrazine. Imazapic plus bentazon POST controlled Texas panicum less than imazapic at the lower rate applied alone. Redroot pigweed was controlled 100% with all herbicide treatments. Imazapic at either rate alone or in tank mixture with bentazon or atrazine controlled prickly sida >99%, which was superior to control obtained with nicosulfuron or nicosulfuron plus atrazine. Smallflower, entireleaf, ivyleaf, pitted, and tall morningglories were controlled 96% or greater with all herbicide treatments except nicosulfuron alone. Sicklepod control was >88% with all imazapic treatments, whereas control from nicosulfuron alone was 72%. Corn yields were improved by the addition of POST herbicides with no differences among POST herbicide treatments.


2009 ◽  
Vol 23 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Wesley J. Everman ◽  
Scott B. Clewis ◽  
Alan C. York ◽  
John W. Wilcut

Field studies were conducted near Clayton, Lewiston, and Rocky Mount, NC in 2005 to evaluate weed control and cotton response to preemergence treatments of pendimethalin alone or in a tank mixture with fomesafen, postemergence treatments of glufosinate applied alone or in a tank mixture withS-metolachlor, and POST-directed treatments of glufosinate in a tank mixture with flumioxazin or prometryn. Excellent weed control (> 91%) was observed where at least two applications were made in addition to glufosinate early postemergence (EPOST). A reduction in control of common lambsquarters (8%), goosegrass (20%), large crabgrass (18%), Palmer amaranth (13%), and pitted morningglory (9%) was observed when residual herbicides were not included in PRE or mid-POST programs. No differences in weed control or cotton lint yield were observed between POST-directed applications of glufosinate with flumioxazin compared to prometryn. Weed control programs containing three or more herbicide applications resulted in similar cotton lint yields at Clayton and Lewiston, and Rocky Mount showed the greatest variability with up to 590 kg/ha greater lint yield where fomesafen was included PRE compared to pendimethalin applied alone. Similarly, an increase in cotton lint yields of up to 200 kg/ha was observed whereS-metolachlor was included mid-POST when compared to glufosinate applied alone, showing the importance of residual herbicides to help maintain optimal yields. Including additional modes of action with residual activity preemergence and postemergence provides a longer period of weed control, which helps maintain cotton lint yields.


2004 ◽  
Vol 18 (4) ◽  
pp. 1111-1116 ◽  
Author(s):  
Daniel O. Stephenson ◽  
Jason A. Bond ◽  
Eric R. Walker ◽  
Mohammad T. Bararpour ◽  
Lawrence R. Oliver

Field studies were conducted in Arkansas in 1999, 2000, and 2001 to evaluate mesotrione applied preemergence (PRE) and postemergence (POST) for weed control in corn grown in the Mississippi Delta region of the United States. Mesotrione was applied PRE (140, 210, and 280 g/ha) alone and POST (70, 105, and 140 g/ha), alone or in tank mixtures with atrazine (280 g/ha). Standard treatments for comparison were S-metolachlor/atrazine PRE and S-metolachlor plus atrazine PRE followed by atrazine POST. All PRE treatments controlled velvetleaf, pitted morningglory, entireleaf morningglory, prickly sida, and broadleaf signalgrass 95% 2 wk after emergence (WAE). Mesotrione controlled velvetleaf 89% or more 4 and 6 WAE. Control of morningglory species by mesotrione POST averaged 92% 6 WAE. Prickly sida was controlled at least 90% by all treatments 4 WAE. Mesotrione applied alone PRE and POST controlled broadleaf signalgrass 83 to 91% 4 WAE. All treatments controlled broadleaf signalgrass less than 90% 6 WAE, except treatments that contained S-metolachlor, which gave 94% or greater control. Corn yield ranged from 10.5 to 12.4 Mg/ha and did not differ among treatments. Mesotrione PRE and POST provided excellent control of broadleaf weeds, but S-metolachlor was needed for broadleaf signalgrass control.


1997 ◽  
Vol 11 (2) ◽  
pp. 354-362 ◽  
Author(s):  
David L. Jordan ◽  
Alan C. York ◽  
James L. Griffin ◽  
Patrick A. Clay ◽  
P. Roy Vidrine ◽  
...  

Field experiments were conducted from 1993 to 1995 to compare weed control by the isopropylamine salt of glyphosate at 0.21, 0.42, 0.63, and 0.84 kg ae/ha applied at three stages of weed growth. Weed control by glyphosate applied at these rates alone or with ammonium sulfate at 2.8 kg/ha was also evaluated. In other experiments, potential interactions between glyphosate and acifluorfen, chlorimuron, and 2,4-DB were evaluated. Velvetleaf, prickly sida, sicklepod, pitted morningglory, entireleaf morningglory, palmleaf morningglory, and hemp sesbania were controlled more easily when weeds had one to three leaves compared with control when weeds had four or more leaves. Glyphosate controlled redroot pigweed, velvetleaf, prickly sida, sicklepod, and barnyardgrass more effectively than pitted morningglory, entireleaf morningglory, palmleaf morningglory, or hemp sesbania. Increasing the rate of glyphosate increased control, especially when glyphosate was applied to larger weeds. Greater variation in control was noted for pitted morningglory, palmleaf morningglory, prickly sida, and velvetleaf than for redroot pigweed, sicklepod, entireleaf morningglory, or hemp sesbania. Ammonium sulfate increased prickly sida and entireleaf morningglory control but did not influence sicklepod, hemp sesbania, or barnyardgrass control. Acifluorfen applied 3 d before glyphosate or in a mixture with glyphosate reduced barnyardgrass control compared with glyphosate applied alone. Chlorimuron did not reduce efficacy. Mixtures of glyphosate and 2,4-DB controlled sicklepod, entireleaf morningglory, and barnyardgrass similar to glyphosate alone.


1993 ◽  
Vol 7 (4) ◽  
pp. 960-965 ◽  
Author(s):  
Andrew J. Lanie ◽  
James L. Griffin ◽  
Daniel B. Reynolds ◽  
P. Roy Vidrine

Field studies were conducted to evaluate weed control with paraquat and glyphosate applied at various rates alone and in combination with residual herbicides. Morningglory, prickly sida, and hemp sesbania control 28 d after treatment was similar regardless of herbicide treatment. In contrast, barnyardgrass control when paraquat was tank mixed with pendimethalin plus imazaquin was equal to that of paraquat alone but less than that for tank mixtures with metolachlor plus metribuzin plus chlorimuron or metolachlor plus metribuzin. Barnyardgrass control and soybean yield when paraquat was applied at 1050 g ai/ha in combination with metolachlor plus metribuzin plus chlorimuron or metolachlor plus metribuzin was greater than when the same residual herbicide treatments were applied with paraquat at 350 g/ha. Yield following glyphosate at 840 and 1120 g ai/ha in combination with residual herbicides was no greater than when glyphosate was applied alone, which was reflective of barnyardgrass control. Tank mixtures of glyphosate at 1680 g/ha with metolachlor plus metribuzin plus chlorimuron or metolachlor plus metribuzin resulted in soybean yield higher than for glyphosate alone. Regardless of the glyphosate and residual herbicide combination, soybean yield was no greater than when paraquat was applied at 350 g/ha in combination with metolachlor plus metribuzin plus chlorimuron.


Sign in / Sign up

Export Citation Format

Share Document