Glyphosate Tolerance in Enhanced Glyphosate-Resistant Cotton (Gossypium hirsutum)

2010 ◽  
Vol 24 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Jonathan A. Huff ◽  
Daniel B. Reynolds ◽  
Darrin M. Dodds ◽  
J. Trenton Irby

Glyphosate applied to glyphosate-resistant (RR) cotton varieties after the four-leaf stage can decrease boll retention resulting in severe yield reductions. Enhanced glyphosate-resistant cotton (RR Flex), released for commercial use in 2006, offers a wider window of glyphosate applications without the risk of yield loss. However, no data exist regarding the effect of glyphosate application, especially late season applications, on fruit partitioning in RR Flex cotton. The objective of this research was to determine the effect of glyphosate rate and application timing on RR Flex cotton yield and fruit partitioning compared with current RR cotton. Studies were conducted during a 3-yr period (2004 to 2006), throughout the cotton growing regions of Mississippi. Roundup Ready (ST 4892 Bollgard/Roundup Ready [BR]) and Roundup Ready Flex (Mon 171 Enhanced Roundup Ready and ST 4554 Bollgard II/Roundup Ready Flex [B2RF]) cotton was planted, and glyphosate was applied at various rates and cotton growth stages. Data were collected using box mapping, a technique designed to depict yield partitioning on a cotton plant. RR Flex cotton yields were unaffected by glyphosate application timing or rate. Yields for ST 4892 BR were affected by application timings after the sixth leaf. ST 4892 BR had increased yield partitioning to position-three bolls and upper nodes with later application timings of glyphosate. Increases in seed cotton partitioned to higher nodes and outer fruiting positions were unable to compensate for fruit shed from innermost, lower fruiting sites. These data indicate that RR Flex cotton has excellent tolerance to late-season glyphosate applications.

1993 ◽  
Vol 7 (1) ◽  
pp. 159-162 ◽  
Author(s):  
David L. Jordan ◽  
Robert E. Frans ◽  
Marilyn R. McClelland

Field experiments were conducted from 1989 through 1991 to determine the effect of DPX-PE350 applied postemergence over-the-top on cotton yield and fiber quality. DPX-PE350, at rates ranging from 50 to 280 g ae ha−1applied to cotton in the VC to R6 growth stages, had no adverse effect on seed cotton yield, micronaire, fiber length, fiber length uniformity, or fiber strength. Cotton injury was 10% or less in all experiments.


Weed Science ◽  
1981 ◽  
Vol 29 (3) ◽  
pp. 356-359 ◽  
Author(s):  
P. E. Keeley ◽  
R. J. Thullen

Four field experiments conducted over 3 yr indicated that cultivation alone failed to prevent johnsongrass [Sorghum halepense(L.) Pers.] from reaching densities that severely reduced yields of cotton (Gossypium hirsutumL. ‘Acala SJ-2’). Density of johnsongrass in plots cultivated four times and hoed weekly for 8 weeks after emergence was reduced to 1 shoot/m2at harvest compared to 74 shoots/m2for plots that were only cultivated. In addition to a 60% average yield loss of seed cotton, yield losses ranging from 40 to 76%, ginning losses were also greater from cultivated than from hand-weeded plots. Compared to cultivated plots, supplementing cultivation with two postemergence applications of 3.0 kg/ha of DSMA (disodium methanearsonate) increased the average yield of cotton by 20% and reduced perennial johnsongrass densities by 64% at harvest. Although yields were improved by applying DSMA, they averaged 40% less than those of hand-weeded plots. The temporary weed control obtained with DSMA was profitable in terms of the additional lint and seed obtained, but insufficient cotton was produced to pay expenses for producing the crop by any of the methods of weed control. High labor costs for hoeing prevented this treatment from being profitable.


1980 ◽  
Vol 94 (2) ◽  
pp. 489-491
Author(s):  
G. S. Dhillon ◽  
D. S. Kler ◽  
Des Raj

A large number of flower buds, flowers and premature bolls of cotton are shed without contributing to seed-cotton yield. Abscission may be affected by environmental factors. It may, therefore, be possible to reduce it by modifying the micro-environment within the crop canopy.


2007 ◽  
Vol 21 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Robert J. Richardson ◽  
Henry P. Wilson ◽  
Gregory R. Armel ◽  
Thomas E. Hines

Field studies were conducted in 1999, 2000, and 2001 to evaluate cotton response to trifloxysulfuron applied postemergence over the top (POT) or postemergence-directed (PDIR) at various growth stages. Treatments included trifloxysulfuron at 3.8 or 7.5 g ai/ha plus nonionic surfactant (NIS) applied POT to one-, three-, and five-leaf cotton or applied PDIR to 30- and 45-cm tall cotton. Crop injury 7 d after treatment (DAT) varied by year and ranged from 17 to 50%, 19 to 46%, and 5 to 23% with trifloxysulfuron applied POT to one-, three-, and five-leaf cotton, respectively. Injury 21DAT averaged 22, 16, and 6% with one-, three-, and five-leaf applications respectively. Trifloxysulfuron applied PDIR injured cotton 2 to 9% 7 DAT and 0 to 12% 21 DAT. At 30 DAT, cotton height was reduced with one-leaf trifloxysulfuron application, whereas differences were not present across other treatments. Heights at 90 days after planting (DAP) did not differ between treatments. Neither trifloxysulfuron rate or application timing negatively affected cotton yield or fiber quality.


Sign in / Sign up

Export Citation Format

Share Document