Response of Three Switchgrass (Panicum virgatum) Cultivars to Mesotrione, Quinclorac, and Pendimethalin

2010 ◽  
Vol 24 (3) ◽  
pp. 336-341 ◽  
Author(s):  
Rick A. Boydston ◽  
Harold P. Collins ◽  
Steven C. Fransen

Annual grass weed control and switchgrass cultivar response to PRE-applied pendimethalin and POST-applied mesotrione and quinclorac was evaluated in 2005 and 2006 near Paterson, WA, in both newly seeded and 1-yr-old established switchgrass. Pendimethalin applied to newly planted switchgrass at 1.1 kg ai ha−1at the one-leaf stage in 2005 or at 0.67 kg ha−1PRE in 2006 severely injured and greatly reduced switchgrass stands. Mesotrione applied POST at 0.07 kg ai ha−1injured newly planted switchgrass, reduced switchgrass height for several weeks after treatment, and reduced final switchgrass biomass by 54% both years. ‘Kanlow’ and ‘Cave-in-Rock’ cultivars were injured less by mesotrione than ‘Shawnee’ in 2005, whereas in 2006, Kanlow was injured less than Shawnee and Cave-in-Rock. Quinclorac applied POST at 0.56 kg ai ha−1injured newly planted switchgrass less than mesotrione and pendimethalin but reduced final switchgrass biomass by 33% both years compared with treatment with atrazine alone. All three herbicide treatments controlled large crabgrass in the year of establishment. Green foxtail counts were reduced 93% or more by pendimethalin and quinclorac compared with nontreated controls, but mesotrione failed to control green foxtail. Pendimethalin applied PRE at 1.1 kg ha−1did not injure 1-yr-old established switchgrass or reduce switchgrass biomass. Quinclorac applied POST at 0.56 kg ha−1to established switchgrass reduced switchgrass biomass of the first harvest by 16% in 1 of 2 yr. Mesotrione applied POST at 0.07 kg ha−1injured established switchgrass and reduced biomass of the first harvest by 33 and 17% in 2005 and 2006, respectively. Kanlow was injured the least by mesotrione in both years. Established switchgrass suppressed late-emerging annual grass weeds sufficiently to avoid the need for a grass-specific herbicide application.

1994 ◽  
Vol 8 (4) ◽  
pp. 673-678 ◽  
Author(s):  
David A. Wall

Field studies were undertaken in 1992 and 1993 to investigate the control of wild oat and green foxtail in flax with reduced rates of fluazifop-P and clethodim applied as tank-mixtures. Fluazifop-P plus clethodim at 50 + 18 g ai/ha controlled wild oat and green foxtail and was as effective as full rates of either herbicide applied alone. These rates represent a 20% reduction in total amount of active ingredient required to control wild oat and green foxtail. Application of fluazifop-P, and/or clethodim prior to the 3- to 4-leaf stage failed to control late emerging grass weeds. Application of graminicide mixtures at or after the 3- to 4-leaf stage controlled late emerging grass weeds and did not affect flax yield. When applied late, fluazifop-P at 175 g/ha tended to reduce flax yield, although weed control was acceptable and no foliar injury was observed following treatment. The efficacy of graminicide mixtures was reduced by addition of bromoxynil plus MCPA to the spray mix.


Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Gary Peng ◽  
K. N. Byer ◽  
K. L. Bailey

One hundred and thirty-three fungal isolates, pathogenic to green foxtail, were evaluated for weed control potential under controlled conditions. To determine weed control efficacy, these pathogens were applied as spore or mycelial suspensions at approximately 105propagules ml−1to green foxtail at the three-leaf stage. One week after inoculation, most isolates caused only minor injury to the plants, but 15 isolates caused 50 to 100% disease. Among the most efficacious isolates, only those ofPyricularia setariaeexhibited strong host specificity to the target weed, revealing no significant pathogenicity on 28 other plant species tested, including many important crops such as wheat, barley, and oat. On green foxtail leaves, conidia of this fungus germinated readily at 14, 20, and 26 C, but the process of germination and appressorial formation was more rapid at the higher temperatures. The fungus applied at the concentration of 105spores ml−1reduced weed fresh weight by 34% 7 d after the treatment when compared with controls, whereas a concentration of 107spores ml−1reduced fresh weight by 87%. This efficacy was comparable with that of the herbicide sethoxydim. When applied to the weed at the one- to four-leaf stages, the fungus reduced green foxtail fresh weight by more than 80%. Efficacy was slightly lower on plants at the five-leaf stage or older. On the green foxtail biotype resistant to the herbicide sethoxydim,P. setariaecaused 80% fresh weight reduction compared with untreated controls, as opposed to 17% achieved with the herbicide. At 20 C, the fungus required a minimum of 6-h dew period to initiate infection, but a 10-h dew period was needed to cause severe damage to green foxtail.


1997 ◽  
Vol 11 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Julio A. Scursoni ◽  
Emilio H. Satorre

The objective of this paper was to evaluate the effect of preplant applications of trifluralin on barley stand and yield, and control of grass weeds in field experiments during 1992 and 1993. Factors examined were: (1) crop planting patterns (conventional drill with rows 15 cm apart and deep-seeder drill with rows 25 cm apart), (2) herbicide application times (22 d before sowing and immediately before sowing), and (3) herbicide application. During 1993, hand-weeded plots also were established. Trifluralin applied preplant at 528 g ai/ha reduced weed density and biomass. Weed control was higher under conventional planting than under the deep planting pattern, and there was no effect of the time of application on herbicide efficacy. There was no herbicide injury to the crop, and grain yield was higher in treated than in untreated plots due to successful weed control.


2019 ◽  
Vol 33 (03) ◽  
pp. 411-425
Author(s):  
Andrea Smith ◽  
Nader Soltani ◽  
Allan J. Kaastra ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTransgenic crops are being developed with herbicide resistance traits to expand innovative weed management solutions for crop producers. Soybean with traits that confer resistance to the hydroxyphenylpyruvate dioxygenase herbicide isoxaflutole is under development and will provide a novel herbicide mode of action for weed management in soybean. Ten field experiments were conducted over 2 years (2017 and 2018) on five soil textures with isoxaflutole-resistant soybean to evaluate annual weed control using one- and two-pass herbicide programs. The one-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, at a low rate (52.5 + 210 g ai ha−1), medium rate (79 + 316 g ai ha−1), and high rate (105 + 420 g ai ha−1); and glyphosate applied early postemergence (EPOST) or late postemergence (LPOST). The two-pass weed control programs included isoxaflutole plus metribuzin, applied PRE, followed by glyphosate applied LPOST, and glyphosate applied EPOST followed by LPOST. At 4 weeks after the LPOST application, control of common lambsquarters, pigweed species, common ragweed, and velvetleaf was variable at 25% to 69%, 49% to 86%, and 71% to 95% at the low, medium, and high rates of isoxaflutole plus metribuzin, respectively. Isoxaflutole plus metribuzin at the low, medium, and high rates controlled grass species evaluated (i.e., barnyardgrass, foxtail, crabgrass, and witchgrass) 85% to 97%, 75% to 99%, and 86% to 100%, respectively. All two-pass weed management programs provided 98% to 100% control of all species. Weed control improved as the rate of isoxaflutole plus metribuzin increased. Two-pass programs provided excellent, full-season annual grass and broadleaf weed control in isoxaflutole-resistant soybean.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on herbicidal activity of cinmethylin applied preemergence at 0.0, 0.3, 0.6, and 0.9 kg ai ha to both dry and moist sandy loam soil. Herbicide application was followed by varying amounts of irrigation. Weed species included velvetleaf, prickly sida, green foxtail, and barnyardgrass. When cinmethylin was applied to a moist soil or when 2.5 cm of irrigation was applied 5 days after cinmethylin application to a dry soil, overall weed control was reduced. Optimum weed control resulted from cinmethylin application to dry soil followed either by a 2.5-cm irrigation within 8 h or a 7.6-cm irrigation within 36 h.


2018 ◽  
Vol 32 (6) ◽  
pp. 707-713 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractTolpyralate is a new Group 27 pyrazolone herbicide that inhibits the 4-hydroxyphenyl-pyruvate dioxygenase enzyme. In a study of the biologically effective dose of tolpyralate from 2015 to 2017 in Ontario, Canada, tolpyralate exhibited efficacy on a broader range of species when co-applied with atrazine; however, there is limited published information on the efficacy of tolpyralate and tolpyralate+atrazine relative to mesotrione and topramezone, applied POST with atrazine at label rates, for control of annual grass and broadleaf weeds. In this study, tolpyralate applied alone at 30 g ai ha−1 provided >90% control of common lambsquarters, velvetleaf, common ragweed, Powell amaranth/redroot pigweed, and green foxtail at 8 weeks after application (WAA). Addition of atrazine was required to achieve >90% control of wild mustard, ladysthumb, and barnyardgrass at 8 WAA. Tolpyralate+atrazine (30+1,000 g ai ha−1) and topramezone+atrazine (12.5+500 g ai ha−1) provided similar control at 8 WAA of the eight weed species in this study; however, tolpyralate+atrazine provided >90% control of green foxtail by 1 WAA. Tolpyralate+atrazine provided 18, 68, and 67 percentage points better control of common ragweed, green foxtail, and barnyardgrass, respectively, than mesotrione+atrazine (100+280 g ai ha−1) at 8 WAA. Overall, tolpyralate+atrazine applied POST provided equivalent or improved control of annual grass and broadleaf weeds compared with mesotrione+atrazine and topramezone+atrazine.


2011 ◽  
Vol 25 (4) ◽  
pp. 620-625 ◽  
Author(s):  
L. K. Fedoruk ◽  
S. J. Shirtliffe

Conventional lentil, because it is relatively noncompetitive, requires effective weed control. In conventional lentil, metribuzin should be applied by the four-node stage to avoid crop injury. This is earlier than the critical period of weed control (CPWC) of lentil, which is between the five- and 10-node stage. However, imidazolinone herbicides potentially can be applied later in imidazolinone-resistant lentil, which might allow lentil to be kept weed-free for the CPWC. The objective of this experiment was to determine the best herbicide choice and application timing necessary to achieve the CPWC in lentil. To do this we tested herbicides differing in efficacy and residual control. The herbicides imazethapyr/imazamox, imazamox, and metribuzin + sethoxydim were applied at the two- and six-node lentil stage. Of the three herbicide treatments, metribuzin + sethoxydim resulted in grain yield that was on average 31% lower than the other herbicides. This occurred because of greater broadleaf biomass (composed primarily of wild mustard) in lentils treated with these herbicides regardless of application timing. Because of this, the CPWC was not attained with metribuzin + sethoxydim. Late applications of imazethapyr/imazamox or imazamox resulted in grain yields 30% higher than with early application of these herbicides. Early applications of the imidazolinone herbicides gave poor control of grass weeds (wild oat and green foxtail), but late applications resulted in grass weed control equivalent to metribuzin + sethoxydim. Imazethapyr/imazamox or imazamox should be applied at the five- to six-node stage of lentil to achieve the CPWC.


2004 ◽  
Vol 18 (2) ◽  
pp. 443-453 ◽  
Author(s):  
Jerry L. Corbett ◽  
Shawn D. Askew ◽  
Walter E. Thomas ◽  
John W. Wilcut

Thirteen field trials were conducted in 1999 and 2000 to evaluate postemergence (POST) weed control with single applications of bromoxynil at 420 or 560 g ai/ha, glufosinate at 291 or 409 g ai/ha, glyphosate at 1,120 g ai/ha, pyrithiobac at 36 or 72 g ai/ha, or sulfosate at 1,120 g ai/ha. Additional treatments evaluated included two applications with glufosinate at both rates in all possible combinations, two applications of glyphosate, and two applications of sulfosate. Weeds were 2 to 5 cm or 8 to 10 cm tall for annual grass and broadleaf weeds whereas yellow nutsedge and glyphosate-resistant corn were 8 to 10 cm tall. All herbicide treatments controlled 2- to 5-cm common cocklebur, Florida beggarweed, jimsonweed, ladysthumb smartweed, Pennsylvania smartweed, pitted morningglory, prickly sida, redroot pigweed, smooth pigweed, and velvetleaf at least 90%. All herbicide treatments except pyrithiobac at either rate controlled 2- to 5-cm common lambsquarters, common ragweed, and tall morningglory at least 90%; pyrithiobac at the lower rate was the only treatment that failed to control entireleaf and ivyleaf morningglory at least 90%. Bromoxynil and pyrithiobac at either rate controlled 2- to 5-cm sicklepod 33 to 68% whereas glufosinate, glyphosate, and sulfostate controlled ≥99%. Glyphosate and sulfosate applied once or twice controlled hemp sesbania less than 70% and volunteer peanut less than 80%. Bromoxynil and pyrithiobac were the least effective treatments for control of annual grass species and bromoxynil controlled Palmer amaranth less than 80%. Glufosinate controlled broadleaf signalgrass, fall panicum, giant foxtail, green foxtail, large crabgrass, yellow foxtail, seedling johnsongrass, Texas panicum, and glyphosate-resistant corn at least 90% but controlled goosegrass less than 60%. Glyphosate and sulfosate controlled all grass species except glyphosate-resistant corn at least 90%. In greenhouse research, goosegrass could be controlled with glufosinate POST plus a late POST-directed treatment of prometryn plus monosodium salt of methylarsonic acid.


2009 ◽  
Vol 23 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Patrick W. Geier ◽  
Phillip W. Stahlman ◽  
David L. Regehr ◽  
Brian L. Olson

Field studies conducted from 2005 to 2007 in Kansas compared the effects of KIH-485 and flufenacet to acetochlor and s-metolachlor applied PRE in grain sorghum. All treatments were combined with 1.12 kg/ha of atrazine for broadleaf weed control. KIH-485 and flufenacet, each at one time (1×) and two times (2×) the labeled rates, controlled large crabgrass 55 to 76% in 2005 and 94% or more in 2006 and 2007. In 2005, all herbicides controlled shattercane less than 20%, and only KIH-485 at the 2× rate controlled shattercane more than 70% in 2006 and 2007. Averaged over herbicides, green foxtail was controlled 98% in 2005, 77% in 2006, and 79% in 2007. Most herbicides controlled foxtail 86% or more when averaged over experiments, however, s-metolachlor at 1×, flufenacet at either rate, or atrazine alone did not. Sorghum was not stunted with KIH-485 or flufenacet in two of seven experiments. However, sorghum growth was reduced 23 to 54% with the 2× rates of KIH-485, flufenacet, or acetochlor in four experiments. Compared to the weed free control, sorghum stand establishment was reduced 18% with the 2× rate of flufenacet at Colby in 2006. At Hays in 2005, stand reductions occurred with acetochlor or KIH-485 at the 2× rates and either rate of flufenacet. Averaged over experiments, grain yields were reduced 9 and 10% with KIH-485 and flufenacet at the 2× rates, respectively. Where precipitation was greatest during the 2 wk following herbicide application, weed control was the best with these herbicides, but sorghum injury was also greatest.


1992 ◽  
Vol 6 (2) ◽  
pp. 333-338 ◽  
Author(s):  
Paul F. Myers ◽  
Harold D. Coble

The interaction of imazethapyr and selected graminicides on annual grass control was studied in field experiments. Tank-mix combinations of imazethapyr with clethodim, fluazifop-P, quizalofop, or sethoxydim resulted in an antagonistic interaction. Control of large crabgrass, fall panicum, and broadleaf signalgrass by each graminicide decreased when tank-mixed with imazethapyr as compared with each graminicide applied alone. Sequential applications of imazethapyr, relative to each graminicide, successfully overcame the antagonism. Imazethapyr applied 5 d before or 1 d after each of the graminicides did not decrease grass weed control compared with each graminicide alone. Imazethapyr applied 3 or 1 d before, or the same day as the graminicides, generally decreased grass weed control.


Sign in / Sign up

Export Citation Format

Share Document