Rate response of select grass weeds to pinoxaden

2020 ◽  
Vol 34 (6) ◽  
pp. 818-823 ◽  
Author(s):  
John M. Peppers ◽  
Clebson G. Gonçalves ◽  
J. Scott McElroy

AbstractPinoxaden is a POST acetyl coenzyme A carboxylase (ACCase) inhibitor in the phenylpyrazolin chemical family and is labelled for turfgrass use at broadcast rates of 35.5 to 71 g ai ha−1 and spot spray rates of 156 to 310 g ai ha−1. A greenhouse rate-response study was conducted to characterize the efficacy of pinoxaden against common grassy weeds. Weed species examined in this study were yellow foxtail, southern sandbur, annual bluegrass, roughstalk bluegrass, large crabgrass, dallisgrass, bahiagrass, goosegrass, and perennial ryegrass. Nonlinear regressions were modelled to determine visible injury rates (the application rate at which 50% of the weed species were injured and the 90% [I90] rate) and weight reduction rates (the application rate at which there was a 50% reduction in fresh weight and 90% reduction [WR90]) for each weed species. Only annual bluegrass, bahiagrass, and goosegrass had visible injury I90 values greater than the maximum labelled spot spray rate of 310 g ai ha−1. Annual bluegrass, bahiagrass, southern sandbur, and goosegrass all had WR90 values greater than the maximum labelled spot spray rate of 310 g ai ha−1. Results from this study indicate that the evaluated weed species can be ranked, according to visible injury I90 values, from most to least susceptible: perennial ryegrass > yellow foxtail > dallisgrass > large crabgrass > southern sandbur > roughstalk bluegrass > bahiagrass > goosegrass > annual bluegrass.

2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.


2010 ◽  
Vol 24 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Glenn Wehtje ◽  
Charles H. Gilliam ◽  
Stephen C. Marble

Both prodiamine and flumioxazin are used in the nursery production and landscape maintenance industries in the southeastern United States for preemergence weed control. Research was conducted to determine whether a tank mixture of these two herbicides would be more effective than either component applied alone. Prodiamine alone, flumioxazin alone, and a 72 : 28 (by weight) prodiamine–flumioxazin mixture were each applied at a series of rates to containers filled with a pine bark–sand substrate that is typical for nursery production in the southeastern United States. Our intent was to have a rate range that hopefully extended from ineffective to lethal for each treatment series. Subsequent to treatment, containers were overseeded with either large crabgrass, spotted spurge, or eclipta. Percent control was determined by comparing treated weed foliage fresh weight to that of the appropriate nontreated control at 6 and 12 wk after application. ANOVA followed by nonlinear regression was used to evaluate the interaction of prodiamine and flumioxazin when combined and to determine the rate of each treatment series required for 95% control (if applicable) for each of the three weed species. Results varied with weed species. The mixture was synergistic and more cost effective than either of the components applied alone in controlling spotted spurge. With respect to large crabgrass control, the mixture was additive and slightly more cost effective than the components. Eclipta could only be controlled with flumioxazin, and this control was antagonized by the addition of prodiamine.


2016 ◽  
Vol 30 (1) ◽  
pp. 238-245 ◽  
Author(s):  
Roberta Masin ◽  
Stefano Macolino

Annual bluegrass is a cosmopolitan, cool-season grass that adapts to different environmental conditions. It is one of the main weeds of turfgrass, and its control is mainly achieved through chemical and cultural practices, although little importance is given to the competitive ability of turfgrass species or cultivars. A field study was performed in northeastern Italy from October 2012 to June 2014 to evaluate the competitive ability of selected perennial ryegrass cultivars to suppress emergence and establishment of annual bluegrass seedlings. Two creeping perennial ryegrasses (‘CSI' and ‘PPG-PR171’) and two traditional cultivars (‘Azimuth' and ‘Presidio') were compared. In late autumn in both years, annual bluegrass was sown in a marked area (30 cm by 30 cm) in the turfgrass. Emerged seedlings were counted weekly, and emergence dynamics were modeled. In the second year, final density of annual bluegrass allowed to grow in turfgrass was also evaluated in summer. Results showed that both seedling emergence and density of annual bluegrass were significantly reduced by creeping perennial cultivars, supporting the hypothesis that these cultivars may reduce annual bluegrass establishment in turfgrass. Seedling emergence pattern of annual bluegrass did not differ in creeping and traditional cultivars of perennial ryegrass, suggesting the possibility of creating a general emergence model suitable in any turfgrass to help turfgrass managers in the control of this weed species.


HortScience ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 304-309
Author(s):  
Christian M. Baldwin ◽  
Eugene K. Blythe ◽  
A. Douglas Brede ◽  
Jami J. Mayer ◽  
R. Golembiewski

The use of glyphosate-tolerant perennial ryegrass (Lolium perenne L.) (PRG) cultivars JS501 and Replay provides turfgrass managers a unique option for annual bluegrass (Poa annua L.) (ABG) control. Both cultivars can tolerate a maximum glyphosate rate of 0.81 kg·ha−1 acid equivalent (a.e.) after establishment under optimal growing temperatures (16 to 24 °C). However, tolerance to applications made immediately after germination and during low air temperatures has received limited investigation. Therefore, objectives of this research were to determine the seedling tolerance and low-temperature response after a fall season glyphosate application to both cultivars. Field trials were conducted in Idaho and Oregon. For the fall application response trial in Idaho, glyphosate was applied at 0, 0.15, 0.29, 0.58, 1.16, 1.74, 2.32, and 3.48 kg·ha−1 a.e. In Oregon, glyphosate was applied at 0, 0.15, 0.29, 0.44, 0.58, 1.16, and 3.48 kg·ha−1 a.e. At both sites, applications were made between late September and early October. To determine seedling tolerance, both cultivars were sprayed with glyphosate at the one-leaf stage (LS), two LS, three LS, or four LS at rates of 0, 0.15, 0.29, and 0.58 kg·ha−1 a.e. Across all trials, ratings included PRG color, cover, and injury. At both trial locations, regression analysis revealed a rate of ≈0.27 kg·ha−1 a.e. was required to cause 20% leaf firing in the fall application response trial. In the seedling tolerance trial, glyphosate applied at 0.58 kg·ha−1 a.e. at the one LS, two LS, and three LS had color ratings 8.0 or greater; however, color ratings dropped to 4.6 when an application was made at the four LS. Based on the environmental conditions of each trial, results suggest glyphosate applications greater than 0.27 kg·ha−1 a.e. as minimum air temperatures approach 0 °C should be avoided. Also, applications should be avoided at the three to four LS if the application rate is greater than 0.29 kg·ha−1 a.e.


Weed Science ◽  
2010 ◽  
Vol 58 (3) ◽  
pp. 189-194 ◽  
Author(s):  
D. Shane Hennigh ◽  
Kassim Al-Khatib

Experiments were conducted to determine the efficacy, absorption, and translocation of nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron on barnyardgrass, green foxtail, longspine sandbur, and large crabgrass. In the greenhouse, nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron were applied at 0.0625, 0.125, 0.25, 0.5, 0.75, 1, and 2 times their label rates of 35, 13, and 26 + 13 g ai ha−1, respectively, on 5- to 10-cm plants. Three weeks after treatment (WAT), barnyardgrass was the most susceptible species to all three herbicides, and large crabgrass was the least susceptible. The nicosulfuron, rimsulfuron, or nicosulfuron + rimsulfuron rates causing 50% visible injury (GR50) for barnyardgrass were 10.9, 4.8, and 6 + 3 g ai ha−1, respectively. Similarly, the GR50for large crabgrass were 25.6, 9.9, and 14.3 + 7.2 g ai ha−1, respectively, 3 WAT. Absorption of nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron was greater in barnyardgrass than in large crabgrass. Absorption of nicosulfuron + rimsulfuron in barnyardgrass and large crabgrass was 74% and 57%, respectively, 7 d after treatment (DAT). In addition, translocation of nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron out of the treated leaf was 14, 12, and 14% higher, respectively, in barnyardgrass than in large crabgrass. The differential response of these weed species to nicosulfuron, rimsulfuron, and nicosulfuron + rimsulfuron might be due to differences in herbicide absorption and translocation.


1999 ◽  
Vol 13 (3) ◽  
pp. 554-560 ◽  
Author(s):  
Christian Andreasen ◽  
Leif Hansen ◽  
Jens C. Streibig

Under greenhouse conditions, annual bluegrass (Poa annua L.), common groundsel (Senecio vulgaris L.), shepherd's purse [Capsella bursa-pastoris (L.) Medicus], small nettle (Urtica urens L.), canola (Brassica napus L. ssp. napus), and pea (Pisum sativa L.) differed in sensitivity to ultraviolet (UV) radiation. Of the weed species, annual bluegrass was the least sensitive; whereas, among the crop species, canola was about sevenfold more sensitive than was pea. The sensitivity of a species to UV radiation was highly dependent upon its stage of development. The study indicates some potential for using UV radiation to control weeds, but the method needs further investigation to unravel the selectivity of the methods and potential health hazards.


2012 ◽  
Vol 22 (6) ◽  
pp. 774-777 ◽  
Author(s):  
Gerald M. Henry ◽  
James T. Brosnan ◽  
Greg K. Breeden ◽  
Tyler Cooper ◽  
Leslie L. Beck ◽  
...  

Indaziflam is an alkylazine herbicide that controls winter and summer annual weeds in bermudagrass (Cynodon sp.) turf by inhibiting cellulose biosynthesis. Research was conducted in Tennessee and Texas during 2010 and 2011 to evaluate the effects of indaziflam applications on overseeded perennial ryegrass (Lolium perenne) establishment and summer annual weed control. In Texas, perennial ryegrass cover on plots treated with indaziflam at 0.75 and 1.0 oz/acre measured 37% to 48% compared with 88% for the untreated control 257 days after initial treatment (DAIT). Perennial ryegrass cover following applications of indaziflam at 0.5 oz/acre measured 84% 257 DAIT and did not differ from the untreated control on any evaluation date. Inconsistent responses in crabgrass (Digitaria sp.) control with indaziflam at 0.5 oz/acre were observed in Tennessee and Texas. However, control was similar to the 0.75-oz/acre rate and prodiamine at 7.8 oz/acre at each location. A September application of indaziflam at 0.75 oz/acre followed by a sequential treatment at 0.5 oz/acre in March of the following year provided >90% control by June 2011. Indaziflam application regimes of this nature would allow for successful fall overseeding of perennial ryegrass every two years and control winter annual weed species such as annual bluegrass (Poa annua).


2014 ◽  
Vol 28 (1) ◽  
pp. 213-224 ◽  
Author(s):  
Michael L. Flessner ◽  
J. Scott McElroy ◽  
Glenn R. Wehtje

‘Replay' and ‘JS501’ perennial ryegrass cultivars have been conventionally bred for reduced sensitivity to glyphosate, potentially allowing the herbicide to be used for selective weed control in overseeded bermudagrass. Field experiments were conducted to evaluate optimal glyphosate application rate, regime (single and sequential applications), and timing for annual bluegrass control in bermudagrass overseeded with these cultivars. Additionally, greenhouse experiments were conducted to compare the sensitivity to glyphosate of Replay and JS501 to susceptible cultivars ‘Caddy Shack' and ‘Top Gun II' through log-logistic rate-response analysis. In field experiments, only two treatments resulted in > 90% annual bluegrass control and < 25% perennial ryegrass injury. These two treatments were a single application of 280 g ae ha−1glyphosate in January and 140 g ha−1followed by an additional 140 g ha−1applied in January. Perennial ryegrass cultivars were compared using 50% inhibition (I50) values, i.e. 50% visible estimates of injury or 50% reduction in clipping weight.I50values obtained 6 wk after treatment from injury data were 2.56, 2.64, 0.81, and 0.84 g ha−1glyphosate for Replay, JS501, Caddy Shack, and Top Gun II, respectively. Replay and JS501 were similar in sensitivity to glyphosate and were up to four times more tolerant than Caddy Shack and Top Gun II across rating dates and data types.


HortScience ◽  
2012 ◽  
Vol 47 (7) ◽  
pp. 932-935 ◽  
Author(s):  
Christian M. Baldwin ◽  
A. Douglas Brede ◽  
Jami J. Mayer

Incorporating the use of glyphosate into a weed management program offers turfgrass managers increased flexibility and cost savings when attempting to control troublesome weeds such as annual bluegrass (ABG) (Poa annua L.). Field trials of glyphosate tolerant perennial ryegrass (PRG) (Lolium perenne L.) cultivars, JS501 and Replay, were initiated to determine glyphosate tolerance and rates required for ABG control. In the tolerance trial, glyphosate was applied on 15 Sept. 2010 and 9 Aug. 2011 at rates of 0, 0.29, 0.58, 1.16, 1.74, 2.32, and 3.48 kg·ha−1 a.e. Glufosinate was also applied at 0, 1.68, and 3.37 kg·ha−1 a.i. In the ABG control trial, glyphosate was applied on 17 June followed by 19 Aug. 2009 and 25 June followed by 25 Aug. 2010 at rates of 0, 0.15, 0.29, 0.44, and 0.58 kg·ha−1 a.e. In the tolerance trial, linear regression analysis revealed a glyphosate application rate of 0.81 kg·ha−1 a.e. was required to cause 20% leaf firing. By the end of the trial, the highest rate of glufosinate resulted in nearly complete desiccation of ‘Replay’ PRG. For ABG control, after four glyphosate applications over a 2-year period, a rate of 0.29 kg·ha−1 a.e. or greater resulted in less than 10% ABG. Untreated plots had ≈83% ABG infestation. Discoloration was not noted for either PRG cultivar at any point over the 2-year trial period. Based on the environmental conditions of each trial, results suggest a recommended application rate should be 0.29 kg·ha−1 a.e. during summer months. This rate is sufficient for ABG control and also provides protection in case spray overlap occurs during an application.


2004 ◽  
Vol 18 (4) ◽  
pp. 887-892 ◽  
Author(s):  
Ryan F. Hasty ◽  
Christy L. Sprague ◽  
Aaron G. Hager

Field studies were conducted during 1999 and 2000 to compare weed control after fall and early-preplant (EPP) herbicide applications in no-till soybean. Three residual treatments (chlorimuron plus metribuzin, chlorimuron plus sulfentrazone, and metribuzin) were applied at two rates and timings (fall and 30 d EPP) either alone or in combination with glyphosate and 2,4-D. The addition of glyphosate and 2,4-D to fall-applied residual herbicides significantly increased control of common chickweed, annual bluegrass, cressleaf groundsel, and shepherd's-purse. The effect of application rate on weed control was species dependent. Fall-applied residual herbicides were comparable with EPP treatments with respect to winter annual weed control; however, at planting control of summer annual weed species with fall treatments was less consistent compared with EPP residual herbicides.


Sign in / Sign up

Export Citation Format

Share Document