Benchmark Study: I. Introduction, Weed Population, and Management Trends from the Benchmark Survey 2010

2012 ◽  
Vol 26 (3) ◽  
pp. 525-530 ◽  
Author(s):  
Joby M. Prince ◽  
David R. Shaw ◽  
Wade A. Givens ◽  
Micheal D. K. Owen ◽  
Stephen C. Weller ◽  
...  

Almost 1,650 corn, cotton, and soybean growers in 22 states participated in a 2010 telephone survey to determine their attitudes with regard to which weed species were most problematic in glyphosate-resistant (GR) crop production systems for corn, cotton, and soybean. The survey is a follow-up to a previous 2005 to 2006 survey that utilized a smaller set of growers from fewer states. In general, growers continued to estimate weed populations as low and few challenges have been created following adoption of GR cropping systems. Pigweed and foxtail species were dominant overall, whereas other species were more commodity and state specific. Corn, cotton, and soybean growers cited velvetleaf, annual morningglory, and waterhemp, respectively, as predominant weeds. Growers in the South region were more likely to report pigweed and waterhemp (Amaranthus spp.), whereas growers in the East and West reported horseweed. When growers were asked with which GR weeds they had experienced personally, horseweed was reported in all regions, but growers in the South more frequently reported pigweed, whereas growers in the East and West regions more frequently reported waterhemp. Comparisons with the previous 2005 survey indicated that more growers believed they were experiencing GR weeds and were more aware of specific examples in their state. In particular, the Amaranthus complex was of greatest concern in continuously cropped soybean and cotton.

2009 ◽  
Vol 89 (1) ◽  
pp. 141-167 ◽  
Author(s):  
Lyle F Friesen ◽  
Hugh J Beckie ◽  
Suzanne I Warwick ◽  
Rene C Van Acker

Kochia [Kochia scoparia (L.) Schrad.] is an annual broadleaf weed species native to Eurasia and introduced as an ornamental to the Americas by immigrants in the mid- to late 1800s. Although sometimes categorized in the genus Bassia, there is no compelling reason for this classification. This naturalized species is a common and economically important weed in crop production systems and ruderal areas in semiarid to arid regions of North America, and has expanded northward in the Canadian Prairies during the past 30 yr. Although primarily self-pollinated, substantial pollen-mediated gene flow and efficient seed dispersal aids both short- and long-distance spread. The weed is morphologically highly variable, and its growth and development are markedly affected by environmental conditions. Kochia, a C4 species, is highly competitive in cropping systems because of its ability to germinate at low soil temperatures and emerge early, grow rapidly, tolerate heat, drought and salinity, and exert allelopathic effects on neighboring species. Moreover, herbicidal control has been compromised to some extent by the widespread evolution of herbicide resistance in the species. Kochia is used as a forage, is palatable to livestock with nutritional value similar to that of alfalfa (Medicago sativa), but can be toxic if it comprises the majority of the diet. Although kochia pollen is an allergen, the seed is a source of phytochemicals including mosquito pheromones and saponins that are potentially beneficial to human health; kochia also is beneficial in phytoremediation of soils contaminated by hydrocarbons or pesticides. Key words: Kochia, Kochia scoparia, Bassia scoparia, herbicide resistance, soil salinity tolerance, weed biology


2009 ◽  
Vol 89 (4) ◽  
pp. 775-789 ◽  
Author(s):  
H J Beckie ◽  
A Francis

This account updates that published by Crompton and Bassett in 1985 (classified then as Salsola pestifer A. Nels.). The taxonomy of this species has been controversial and confusing. Salsola tragus is an annual broadleaf weed species native to Eurasia and inadvertently introduced to the Americas in crop seed in 1873. This naturalized species is a common and economically important weed in crop production systems and non-cropped disturbed areas in semiarid to arid regions of western North America; in eastern North America, S. tragus commonly occurs along roadsides, railways, and other dry, stony, and sandy areas. Pollen-mediated gene flow and efficient seed dispersal aids both short- and long-distance spread. As a C4 species, S. tragus is highly competitive in semiarid and arid small-grain cropping systems because of its ability to emerge early, efficiently extract soil available water by its extensive root system, and tolerate heat, drought, and salinity. Moreover, the evolution of acetolactate synthase-inhibitor resistance has impacted herbicidal control of the species. The weed has been used as an emergency forage during drought, and is palatable when immature and non-toxic to livestock. Key words: Salsola tragus, Salsola pestifer, Salsola iberica, Salsola kali, Russian thistle, weed biology


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


2012 ◽  
Vol 52 (4) ◽  
pp. 486-493 ◽  
Author(s):  
Beata Feledyn-Szewczyk

Abstract The research was conducted from 2008 to 2010, and compared the influence of different weed control methods used in spring wheat on the structure of the weed communities and the crop yield. The study was carried out at the Experimental Station of the Institute of Soil Science and Plant Cultivation - State Research Institute in Osiny as part of a long-term trial where these crop production systems had been compared since 1994. In the conventional and integrated systems, spring wheat was grown in a pure stand, whereas in the organic system, the wheat was grown with undersown clover and grasses. In the conventional system, herbicides were applied two times in a growing season, but in the integrated system - only once. The effectiveness of weed management was lower in the organic system than in other systems, but the dry matter of weeds did not exceed 60 g/m2. In the integrated system, the average dry matter of weeds in spring wheat was 4 times lower, and in the conventional system 10 times lower than in the organic system. Weed diversity was the largest in spring wheat cultivated in the organic system. In the conventional and integrated systems, compensation of some weed species was observed (Viola arvensis, Fallopia convolvulus, Equisetum arvense). The comparison of weed communities using Sorenson’s indices revealed more of a similarity between systems in terms of number of weed species than in the number of individuals. Such results imply that qualitative changes are slower than quantitative ones. The yield of grain was the biggest in the integrated system (5.5 t/ha of average). It was 35% higher than in the organic system, and 20% higher than in conventional ones.


2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


2020 ◽  
Vol 8 (3) ◽  
pp. 328 ◽  
Author(s):  
Antonio Castellano-Hinojosa ◽  
Sarah L. Strauss

Increased concerns associated with interactions between herbicides, inorganic fertilizers, soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have renewed interest in the use of cover crops in the inter-row middles or between trees as an alternative sustainable management strategy for these systems. Although interactions between the soil microbiome and cover crops have been examined for annual cropping systems, there are critical differences in management and growth in perennial cropping systems that can influence the soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify potentially important taxa and research gaps that need to be addressed to facilitate assessments of the relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance will allow for more effective and sustainable management of perennial cropping systems.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-9
Author(s):  
Alan J Schlegel ◽  
Yared Assefa ◽  
Daniel O’Brien

Abstract. Selection of optimal crops and cropping systems for most efficient water use specific for local environments can improve global water security. Limited irrigation with ground water is one alternative to alleviate crops from low amount or unevenly distributed water in the growing seasons in semi-arid regions. The main objectives of this research were to quantify yield-water use relationships of three limited irrigated crops, determine effect of crop selection on profitability with limited irrigation, and identify profitable and alternative crop production systems. A field study was conducted at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas, from 2012 through 2017. There were four treatments in the study, two 1-yr systems of continuous corn ( L.) (C-C) and continuous grain sorghum (L.) (GS-GS) and two 2-yr rotations of corn-grain sorghum (C-GS) and corn-winter wheat ( L.) (C-W). Overall corn yield after wheat (C-W) was about 1.4 Mg (ha)-1 greater than C-C. Corn and sorghum yields were similar grown as monoculture or in rotation with each other. Available soil water at corn planting and during the growing season were 20 to 40 mm (240 cm profile-1) less in the C-GS rotation compared with C-C and C-W rotations. Corn yield increased as water use (yield-water use) increased in C-W rotation but yield-water use relationships tended to be negative in C-C and C-GS rotations. Grain sorghum yield increased with water use in both rotations but at a greater rate in GS-GS compared with C-GS. Despite greater corn grain yield in C-W, our economic analysis showed that wheat was the least profitable of the three crops causing the C-W rotation to be least profitable. In this study, the most profitable limited irrigation crop rotation was corn-grain sorghum (C-GS). Keywords: Corn-sorghum-wheat, Crop rotation, Limited irrigation, Profitability, Supplementary irrigation, Sustainability.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Huan Zhang ◽  
Markus Flury ◽  
Carol Miles ◽  
Hang Liu ◽  
Lisa DeVetter

Soil-biodegradable plastic mulches (BDMs) are made from biodegradable materials that can be bio-based, synthetic, or a blend of these two types of polymers, which are designed to degrade in soil through microbial activities. The purpose of BDMs is to reduce agricultural plastic waste by replacing polyethylene (PE) mulch, which is not biodegradable. Most studies have evaluated the breakdown of BDMs within annual production systems, but knowledge of BDM breakdown in perennial systems is limited. The objective of this study was to evaluate the deterioration and degradation of BDMs in a commercial red raspberry (Rubus ideaus L.) production system. Deterioration was low (≤11% percent soil exposure; PSE) for all mulches until October 2017 (five months after transplanting, MAT). By March 2018 (10 MAT), deterioration reached 91% for BDMs but remained low for PE mulch (4%). Mechanical strength also was lower for BDMs than PE mulch. In a soil burial test in the raspberry field, 91% of the BDM area remained after 18 months. In-soil BDM degradation was minimal, although the PSE was high. Since mulch is only applied once in a perennial crop production system, and the lifespan of the planting may be three or more years, it is worth exploring the long-term degradation of BDMs in perennial cropping systems across diverse environments.


Sign in / Sign up

Export Citation Format

Share Document