Glyphosate-Resistant Crop Production Systems: Impact on Weed Species Shifts

Author(s):  
Krishna N. Reddy ◽  
Jason K. Norsworthy
2012 ◽  
Vol 52 (4) ◽  
pp. 486-493 ◽  
Author(s):  
Beata Feledyn-Szewczyk

Abstract The research was conducted from 2008 to 2010, and compared the influence of different weed control methods used in spring wheat on the structure of the weed communities and the crop yield. The study was carried out at the Experimental Station of the Institute of Soil Science and Plant Cultivation - State Research Institute in Osiny as part of a long-term trial where these crop production systems had been compared since 1994. In the conventional and integrated systems, spring wheat was grown in a pure stand, whereas in the organic system, the wheat was grown with undersown clover and grasses. In the conventional system, herbicides were applied two times in a growing season, but in the integrated system - only once. The effectiveness of weed management was lower in the organic system than in other systems, but the dry matter of weeds did not exceed 60 g/m2. In the integrated system, the average dry matter of weeds in spring wheat was 4 times lower, and in the conventional system 10 times lower than in the organic system. Weed diversity was the largest in spring wheat cultivated in the organic system. In the conventional and integrated systems, compensation of some weed species was observed (Viola arvensis, Fallopia convolvulus, Equisetum arvense). The comparison of weed communities using Sorenson’s indices revealed more of a similarity between systems in terms of number of weed species than in the number of individuals. Such results imply that qualitative changes are slower than quantitative ones. The yield of grain was the biggest in the integrated system (5.5 t/ha of average). It was 35% higher than in the organic system, and 20% higher than in conventional ones.


2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 570-584 ◽  
Author(s):  
Micheal D. K. Owen

Herbicides have been the principal means of weed control in developed countries for approximately 50 yr because they are the most cost-effective method. Such general use of herbicides has resulted in weed resistance to herbicides, which continues to be a growing problem. Within the past decade, the evolution of resistance to the once-dominant herbicide glyphosate has resulted in major concerns about the future ability to control weeds in many crop systems. Moreover, many weed species have evolved resistance to multiple mechanisms of herbicide action. Given the dearth of new herbicides with novel mechanisms of action, it appears inevitable that weed management programs will need to be supplemented by the use of tactics other than herbicides. However, the inclusion of more diversity for weed management also introduces complexity, cost, and time constraints to current crop production systems. This paper describes broadly the considerations, opportunities, and constraints of diverse weed management tactics to address the burgeoning problems with herbicide resistance.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1333-1340 ◽  
Author(s):  
Richard W. Smiley ◽  
Guiping Yan ◽  
Jennifer A. Gourlie

Eighteen rangeland plants and 16 weed species were assayed in the greenhouse for efficiency as hosts of Pratylenchus neglectus and P. thornei. Hosting ability ratings were assigned using the ratio of final versus initial nematode density and by comparing the final nematode density to that of susceptible wheat controls. Good hosts of both Pratylenchus spp. included thickspike bluegrass ‘Critana’, smooth brome ‘Manchar’, seven wheatgrasses, and jointed goatgrass. Good hosts of P. neglectus but not P. thornei included two hairy vetches, western wheatgrass ‘Rosana’, big bluegrass ‘Sherman’, tall wheatgrass ‘Alkar’, green foxtail, kochia, large crabgrass, palmer amaranth, redroot pigweed, tumble mustard, and wild oat. Good hosts of P. thornei but not P. neglectus included hard fescue ‘Durar’, sheep fescue ‘Blacksheep’, downy brome, and rattail fescue. Poor or minor hosts of both Pratylenchus spp. included two alfalfas, dandelion, horseweed, lambsquarters, prostrate spurge, and Russian thistle. These assays will provide guidance for transitioning rangeland into crop production and for understanding the role of weeds on densities of Pratylenchus spp. in wheat-production systems.


2017 ◽  
Vol 32 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Zahoor A. Ganie ◽  
Simranpreet Kaur ◽  
Prashant Jha ◽  
Vipan Kumar ◽  
Amit J. Jhala

Giant ragweed is one of the most competitive annual broadleaf weeds in corn and soybean crop production systems in the United States and eastern Canada. Management of giant ragweed has become difficult due to the evolution of resistance to glyphosate and/or acetolactate synthase (ALS)-inhibitor herbicides and giant ragweed’s ability to emerge late in the season, specifically in the eastern Corn Belt. Late-season herbicide application may reduce seed production of weed species; however, information is not available about late-season herbicide applications on giant ragweed seed production. The objective of this study was to evaluate the effect of single or sequential late-season applications of 2,4-D, dicamba, glyphosate, and glufosinate on inflorescence injury and seed production of glyphosate-resistant (GR) giant ragweed under greenhouse and field conditions (bare ground study). Single and sequential applications of glufosinate resulted in as much as 59 and 60% injury to giant ragweed inflorescence and as much as 78 and 75% reduction in seed production, respectively, under field and greenhouse conditions. In contrast, single or sequential applications of 2,4-D or dicamba resulted in ≥ 96% inflorescence injury and reduction in seed production in the field as well as in greenhouse studies. The results indicated that 2,4-D or dicamba are effective options for reducing seed production of glyphosate-resistant giant ragweed even if applied late in the season. Targeting weed seed production to decrease the soil seedbank will potentially be an effective strategy for an integrated management of GR giant ragweed.


2009 ◽  
Vol 89 (1) ◽  
pp. 141-167 ◽  
Author(s):  
Lyle F Friesen ◽  
Hugh J Beckie ◽  
Suzanne I Warwick ◽  
Rene C Van Acker

Kochia [Kochia scoparia (L.) Schrad.] is an annual broadleaf weed species native to Eurasia and introduced as an ornamental to the Americas by immigrants in the mid- to late 1800s. Although sometimes categorized in the genus Bassia, there is no compelling reason for this classification. This naturalized species is a common and economically important weed in crop production systems and ruderal areas in semiarid to arid regions of North America, and has expanded northward in the Canadian Prairies during the past 30 yr. Although primarily self-pollinated, substantial pollen-mediated gene flow and efficient seed dispersal aids both short- and long-distance spread. The weed is morphologically highly variable, and its growth and development are markedly affected by environmental conditions. Kochia, a C4 species, is highly competitive in cropping systems because of its ability to germinate at low soil temperatures and emerge early, grow rapidly, tolerate heat, drought and salinity, and exert allelopathic effects on neighboring species. Moreover, herbicidal control has been compromised to some extent by the widespread evolution of herbicide resistance in the species. Kochia is used as a forage, is palatable to livestock with nutritional value similar to that of alfalfa (Medicago sativa), but can be toxic if it comprises the majority of the diet. Although kochia pollen is an allergen, the seed is a source of phytochemicals including mosquito pheromones and saponins that are potentially beneficial to human health; kochia also is beneficial in phytoremediation of soils contaminated by hydrocarbons or pesticides. Key words: Kochia, Kochia scoparia, Bassia scoparia, herbicide resistance, soil salinity tolerance, weed biology


2009 ◽  
Vol 89 (4) ◽  
pp. 775-789 ◽  
Author(s):  
H J Beckie ◽  
A Francis

This account updates that published by Crompton and Bassett in 1985 (classified then as Salsola pestifer A. Nels.). The taxonomy of this species has been controversial and confusing. Salsola tragus is an annual broadleaf weed species native to Eurasia and inadvertently introduced to the Americas in crop seed in 1873. This naturalized species is a common and economically important weed in crop production systems and non-cropped disturbed areas in semiarid to arid regions of western North America; in eastern North America, S. tragus commonly occurs along roadsides, railways, and other dry, stony, and sandy areas. Pollen-mediated gene flow and efficient seed dispersal aids both short- and long-distance spread. As a C4 species, S. tragus is highly competitive in semiarid and arid small-grain cropping systems because of its ability to emerge early, efficiently extract soil available water by its extensive root system, and tolerate heat, drought, and salinity. Moreover, the evolution of acetolactate synthase-inhibitor resistance has impacted herbicidal control of the species. The weed has been used as an emergency forage during drought, and is palatable when immature and non-toxic to livestock. Key words: Salsola tragus, Salsola pestifer, Salsola iberica, Salsola kali, Russian thistle, weed biology


2012 ◽  
Vol 26 (3) ◽  
pp. 525-530 ◽  
Author(s):  
Joby M. Prince ◽  
David R. Shaw ◽  
Wade A. Givens ◽  
Micheal D. K. Owen ◽  
Stephen C. Weller ◽  
...  

Almost 1,650 corn, cotton, and soybean growers in 22 states participated in a 2010 telephone survey to determine their attitudes with regard to which weed species were most problematic in glyphosate-resistant (GR) crop production systems for corn, cotton, and soybean. The survey is a follow-up to a previous 2005 to 2006 survey that utilized a smaller set of growers from fewer states. In general, growers continued to estimate weed populations as low and few challenges have been created following adoption of GR cropping systems. Pigweed and foxtail species were dominant overall, whereas other species were more commodity and state specific. Corn, cotton, and soybean growers cited velvetleaf, annual morningglory, and waterhemp, respectively, as predominant weeds. Growers in the South region were more likely to report pigweed and waterhemp (Amaranthus spp.), whereas growers in the East and West reported horseweed. When growers were asked with which GR weeds they had experienced personally, horseweed was reported in all regions, but growers in the South more frequently reported pigweed, whereas growers in the East and West regions more frequently reported waterhemp. Comparisons with the previous 2005 survey indicated that more growers believed they were experiencing GR weeds and were more aware of specific examples in their state. In particular, the Amaranthus complex was of greatest concern in continuously cropped soybean and cotton.


2014 ◽  
Vol 63 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Éva Lehoczky ◽  
M. Kamuti ◽  
N. Mazsu ◽  
J. Tamás ◽  
D. Sáringer-Kenyeres ◽  
...  

Plant nutrition is one of the most important intensification factors of crop production. The utilization of nutrients, however, may be modified by a number of production factors, including weed presence. Thus, the knowledge of occurring weed species, their abundance, nutrient and water uptake is extremely important to establish an appropriate basis for the evaluation of their risks or negative effects on crops. That is why investigations were carried out in a long-term fertilization experiment on the influence of different nutrient supplies (Ø, PK, NK, NPK) on weed flora in maize field.The weed surveys recorded similar diversity on the experimental area: the species of A. artemisiifolia, S. halepense and D. stramonium were dominant, but C. album and C. hybridum were also common. These species and H. annuus were the most abundant weeds.Based on the totalized and average data of all treatments, density followed the same tendency in the experimental years. It was the highest in the PK treated and untreated plots, and significantly exceeded the values of NK fertilized areas. Presumably the better N availability promoted the development of nitrophilic weeds, while the mortality of other small species increased.Winter wheat and maize forecrops had no visible influence on the diversity and the intensity of weediness. On the contrary, there were consistent differences in the density of certain weed species in accordance to the applied nutrients. A. artemisiifolia was present in the largest number in the untreated control and PK fertilized plots. The density of S. halepense and H. annuus was also significantly higher in the control areas. The number of their individuals was smaller in those plots where N containing fertilizers were used. Contrary to them, the density of D. stramonium, C. album and C. hybridum was the highest in the NPK treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Sign in / Sign up

Export Citation Format

Share Document