Preemergence Herbicides for Potential Use in Potato Production

2012 ◽  
Vol 26 (4) ◽  
pp. 731-739 ◽  
Author(s):  
Rick A. Boydston ◽  
Joel Felix ◽  
Kassim Al-Khatib

Field trials were conducted in 2009 and 2010 near Paterson, WA and Ontario, OR to evaluate weed control and potato tolerance to PRE-applied pyroxasulfone, saflufenacil, and KSU12800 herbicides. Pyroxasulfone at 0.09 to 0.15 kg ai ha−1and saflufenacil at 0.05 to 0.07 kg ai ha−1applied PRE alone or in tank mixes with several currently labeled herbicides did not injure potatoes at either site in both years. KSU12800 at 0.15 kg ai ha−1injured potatoes from 18 to 26% for a period of about 4 wk after emergence at Ontario both years. In addition, KSU12800 at 0.29 and 0.45 kg ha−1injured potatoes from 17 to 38% at 17 d after treatment (DAT) at Paterson in 2009. Pyroxasulfone at 0.15 kg ha−1controlled barnyardgrass, hairy nightshade, and redroot pigweed 96% or greater, but control of common lambsquarters was variable. Saflufenacil at 0.07 kg ha−1provided greater than 93% control of common lambsquarters, hairy nightshade, and redroot pigweed at both sites in 2010. KSU12800 at 0.15 kg ha−1controlled common lambsquarters, hairy nightshade, and redroot pigweed 99% or more at Ontario, but only 87 to 93% at Paterson in 2010. These herbicides did not reduce yield of U.S. no. 1 tubers or total tuber yields compared to standard labeled herbicide treatments when weed control was adequate.

2009 ◽  
Vol 23 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Scott L. Bollman ◽  
Christy L. Sprague

Field trials were conducted to determine if tillage and soil-applied herbicides had an effect on weed control and sugarbeet growth with a micro-rate herbicide program. Sugarbeet emergence was earlier in the moldboard plowed system compared with the chisel plowed system at three of four sites. Conditions were dry and sugarbeets emerged 5 d later in the moldboard plowed system compared with the chisel plowed system at the fourth site. Even though the rate of sugarbeet emergence differed between tillage systems at all four sites, final sugarbeet populations did not differ at two of the four sites. Sugarbeet injury from PRE treatments ofS-metolachlor, ethofumesate, and ethofumesate plus pyrazon, followed by four POST micro-rate applications, ranged from 11 to 27% and 1 to 18% in the chisel and moldboard plowed systems, respectively, 6 wk after planting (WAP). Under wet conditions, sugarbeet stand was reduced and injury was greatest from PRE applications ofS-metolachlor. Common lambsquarters, pigweed (redroot pigweed and Powell amaranth), and giant foxtail control in mid-August was consistently higher when a PRE herbicide was applied prior to micro-rate herbicide treatments. Even though there were differences between PRE and no-PRE treatments with respect to sugarbeet injury and weed control, recoverable white sucrose yield did not differ between herbicide treatments. However, recoverable white sucrose yield was greater in the moldboard plowed treatments compared with the chisel plowed treatments at three out of the four sites.


2006 ◽  
Vol 20 (4) ◽  
pp. 1023-1029 ◽  
Author(s):  
Pamela J.S. Hutchinson ◽  
Brent R. Beutler ◽  
Daniel M. Hancock

Sulfentrazone was applied POST at 13, 26, or 53 g ai/ha alone or in combination with metribuzin at 280 or 420 g ai/ha in field trials conducted with ‘Russet Burbank’ potatoes in 2002 to 2004. Sulfentrazone alone provided less than 84% redroot pigweed, common lambsquarters, and kochia control, although control usually improved to 90% or greater when metribuzin was included. Hairy nightshade control reached 90% only when the highest rates of both herbicides were applied in combination. Sulfentrazone alone did not provide any volunteer oat control, whereas control was 85% when the highest metribuzin rate was included. Potato crop injury, consisting of chlorosis, interveinal blackening of the leaves, eventual necrosis, leaf malformation, and plant stunting, increased as the sulfentrazone rate increased. In contrast, injury decreased as metribuzin rate increased from 0 to 420 g/ha, when averaged across sulfentrazone rates. Reduction in injury levels and increased weed control translated to improved tuber yields as metribuzin rate increased. However, when sulfentrazone was combined with the highest metribuzin rate, potato injury was still relatively high at 26 and 18% at 1 and 4 wk after treatment, and acceptance of sulfentrazone applied POST with metribuzin by potato growers is unlikely.


1998 ◽  
Vol 12 (2) ◽  
pp. 215-222
Author(s):  
Robin R. Bellinder ◽  
Marija Arsenovic ◽  
Jonathan J. Kirkwyland ◽  
Russell W. Wallace

Following suggested guidelines developed by the Environmental Protection Agency (EPA), comparative snap bean herbicide performance field trials were conducted from 1993 to 1995 in New York. Data were obtained on crop injury, weed control, and weed biomass, and crop yield, quality, and losses during harvest. Trifluralin, EPTC, and pendimethalin applied preplant incorporated (PPI) and applications of metolachlor applied preemergence (PRE) provided less than adequate control of redroot pigweed, common lambsquarters, and hairy galinsoga. Cultivation improved weed control with PPI and PRE applications. Metolachlor + fomesafen PRE provided good control of hairy galinsoga, adequate redroot pigweed control, and marginal control of common lambsquarters. Fomesafen applied postemergence (POST), combinations of metolachlor applied PRE with fomesafen or bentazon applied POST, and fomesafen + bentazon applied POST adequately controlled the three weed species without cultivation. Herbicide treatments had little measurable impact on snap bean quality or losses during harvest. Information from product comparison trials may be useful in developing recommendations for growers but may prove less than adequate in providing data necessary for a thorough evaluation of the relative benefits of individual herbicides as intended by EPA guidelines. Difficulties were encountered in following the guidelines, and costs of conducting the product comparison trials for a single crop in one growing region exceeded $90,000 over 3 yr.


1990 ◽  
Vol 4 (3) ◽  
pp. 509-513 ◽  
Author(s):  
Russell W. Wallace ◽  
Robin R. Bellinder

Linuron, metribuzin, oryzalin, and metolachlor were applied at recommended (1X) and two-thirds (0.67X) rates to evaluate control of redroot pigweed and common lambsquarters in conventional and rye-stubble reduced-tillage potato production systems. Regardless of tillage, common lambsquarters control was satisfactory during both seasons at both rates of linuron, metribuzin, and oryzalin. Redroot pigweed control by these three herbicides, although excellent in 1988, was poor in RT plots during 1987. Yields did not differ between tillage systems. Reduced weed control with metolachlor during both seasons, and possible crop injury with linuron in 1987 resulted in significant yield reductions.


2014 ◽  
Vol 94 (7) ◽  
pp. 1239-1244 ◽  
Author(s):  
Kimberly D. Walsh ◽  
Nader Soltani ◽  
Lynette R. Brown ◽  
Peter H. Sikkema

Walsh, K. D., Soltani, N., Brown, L. R. and Sikkema, P. H. 2014. Weed control with postemergence glyphosate tank mixes in glyphosate-resistant soybean. Can. J. Plant Sci. 94: 1239–1244. Six field trials were conducted over a 3-yr period (2011, 2012 and 2013) in Ontario, Canada, to evaluate various postemergence (POST) glyphosate tank mixes for weed management in glyphosate-resistant (GR) soybean. Herbicide treatments included glyphosate applied alone or mixed with acifluorfen, fomesafen, bentazon and thifensulfuron-methyl. Glyphosate tank mixtures with acifluorfen, fomesafen, bentazon and thifensulfuron-methyl caused GR soybean injury of up to 21, 11, 4 and 14% at 7 d after treatment (DAT), which was reduced to 5, 0, 0 and 2% by 28 DAT, respectively. Velvetleaf, green pigweed, common ragweed and common lambsquarters control ranged from 55 to 95, 93 to 100, 70 to 92 and 81 to 98% at 28 DAT respectively. Relative to glyphosate alone, tank mixtures with thifensulfuron-methyl provided equivalent to increased weed control, while acifluorfen, fomesafen and bentazon provided equivalent to reduced weed control. All herbicide tank mixtures resulted in higher yields (3.8–4.0 t ha−1) than the untreated check (2.7 t ha−1), and were generally equivalent to glyphosate alone (4.1 t ha−1). Results from this study indicate that the glyphosate tank mixtures evaluated did not provide a benefit over glyphosate alone.


2005 ◽  
Vol 15 (2) ◽  
pp. 238-243 ◽  
Author(s):  
S. Alan Walters ◽  
Scott A. Nolte ◽  
Bryan G. Young

The influence of `Elbon', `Maton', and `Wheeler' winter rye (Secale cereale) with or without herbicide treatments on weed control in no-tillage (NT) zucchini squash (Cucurbita pepo) was determined. `Elbon' or `Maton' produced higher residue biomass, greater soil coverage, and higher weed control compared with `Wheeler'. Although winter rye alone did not provide sufficient weed control (generally <70%), it provided substantially greater redroot pigweed (Amaranthus retroflexus) and smooth crabgrass (Digitaria ischaemum) control (regardless of cultivar used) compared with no winter rye at both 28 and 56 days after transplanting (DAT). No effect (P > 0.05) of winter rye cultivar on early or total squash yield was detected. Although applying clomazone + ethalfluralin to winter rye residues improved redroot pigweed control compared with no herbicide, the level of control was generally not adequate (<85% control) by 56 DAT. Treatments that included halosulfuron provided greater control of redroot pigweed than clomazone + ethalfluralin, and redroot pigweed control from halosulfuron treatments was similar to the weed-free control. However, regardless of year or cover crop, any treatment with halosulfuron caused unacceptable injury to zucchini squash plants which lead to reduced squash yield (primarily early yields). Insignificant amounts of squash injury (<10% due to stunting) resulted from clomazone + ethalfluralin in no-tillage plots during either year. Treatments with clomazone + ethalfluralin had early and total yields that were similar to those of the weed-free control, although this herbicide combination provided less weed control compared with the weed-free control.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971D-972
Author(s):  
Harlene M. Hatterman-Valenti ◽  
Carrie E. Schumacher ◽  
Collin P. Auwarter ◽  
Paul E. Hendrickson

Field studies were conducted at Absaraka, Carrington, and Oakes, N.D., in 2005 to evaluate early season broadleaf weed control and onion (Allium cepa L.) injury with herbicides applied preemergence to the crop. DCPA is a common preemergence herbicide used in onion. However, DCPA can be uneconomical in most high-weed situations, or the usage may be restricted due to possible groundwater contamination. Potential substitutes evaluated were bromoxynil, dimethenamid-P, and pendimethalin. Main broadleaf weeds were redroot pigweed (Amaranthus retroflexus L.) and common lambsquarters (Chenopodium album L.). In general, all herbicides, except bromoxynil, provided acceptable broadleaf weed control 4 weeks after treatment. The highest herbicide rate provided greater weed control compared with the lowest rate for each herbicide. However, onion height was also reduced with the highest herbicide rate. In addition, the two highest rates of dimethenamid-P reduced the onion stand compared with the untreated. A postemergence application of bromoxynil + oxyfluorfen + pendimethalin to onion at the four- to five-leaf stage controlled the few broadleaf weeds that escaped the preemergence treatments and provided residual control of mid- and late-season germinating broadleaf weeds at two of the three locations. Intense germination of redroot pigweed during July at the Oakes location reduced onion yield with all treatments compared with the hand-weeded check. In contrast, total onion yields with all herbicide treatments except the high rate of dimethenamid-P were similar to the hand-weeded check at Absaraka and Carrington.


2007 ◽  
Vol 21 (4) ◽  
pp. 1023-1028 ◽  
Author(s):  
Pamela J. S. Hutchinson

In 2004 and 2005, field research was conducted in Idaho to compare tank mixtures of flumioxazin at the 53 g ai/ha potato use rate with comparable tank mixtures of rimsulfuron at 26 g ai/ha for broad-spectrum weed control. Flumioxazin in two-way tank mixtures with metribuzin, EPTC, pendimethalin, S-metolachlor, or ethalfluralin provided greater than 90% hairy nightshade control, which was comparable with control by similar rimsulfuron two-way tank mixtures. Flumioxazin plus metribuzin or rimsulfuron were the only two-way mixtures with flumioxazin consistently providing 90% or greater redroot pigweed, common lambsquarters, and green foxtail control. Control of these weeds by any of the rimsulfuron two-way mixtures was almost always greater than 90%. Three-way tank mixtures containing flumioxazin or rimsulfuron controlled hairy nightshade, redroot pigweed, and common lambsquarters similarly, and control ranged from 89 to 100%. When metribuzin was not included with flumioxazin in three-way mixtures, control was 80 to 97% and not always comparable with the 89 to 100% control by similar rimsulfuron mixtures. Green foxtail control by flumioxazin or rimsulfuron three-way mixtures usually was similar and greater than 90%.


2013 ◽  
Vol 27 (2) ◽  
pp. 369-372 ◽  
Author(s):  
James R. Loken ◽  
Harlene M. Hatterman-Valenti

Early-season weed competition may cause substantial yield losses in onion. Oxyfluorfen and bromoxynil are POST herbicide options for weed control once onion has developed two leaves, which often takes 4 to 6 wk. Multiple applications of oxyfluorfen at 35 and 18 g ai ha−1and bromoxynil at 35 and 18 g ae ha−1with adjuvants were evaluated for onion safety and weed control under controlled greenhouse conditions. Oxyfluorfen at 35 g ha−1plus organosilicone surfactant caused 42% onion injury at 12 d after three sequential applications. Onion treated with bromoxynil at 18 g ha−1plus high surfactant oil concentrate had lower fresh weight (0.7 g) compared to methylated seed oil (MSO) (1.2 g) or petroleum oil concentrate (POC) (1.3 g) at the same bromoxynil rate. The addition of nonionic surfactant to bromoxynil, averaged across bromoxynil rates, provided 17 and 39% control of redroot pigweed and common lambsquarters, respectively. Redroot pigweed control with oxyfluorfen at 35 or 18 g ha−1plus any tested adjuvant was excellent (≥ 93%). Results suggested the use of POC or MSO with either oxyfluorfen or bromoxynil for subsequent field trials because of similar common lambsquarters and redroot pigweed control and onion safety.


2010 ◽  
Vol 24 (2) ◽  
pp. 153-159 ◽  
Author(s):  
James R. Loken ◽  
Harlene M. Hatterman-Valenti

Field experiments were conducted at Oakes, Absaraka, and Tappen, ND, in 2006 and repeated at Oakes and Absaraka, ND, in 2007 to evaluate early season weed control of common lambsquarters and redroot pigweed in onion with POST herbicides applied at multiple reduced rates (microrates) and to determine whether microrate herbicide treatments effectively reduced early season broadleaf weed competition, caused crop injury, or affected yield. Application rates of bromoxynil, oxyfluorfen, metribuzin, and acifluorfen were reduced to 0.25, 0.13, and 0.06× of their lowest labeled rate and applied in sequential applications (every 7 d) either two or three times. The 0.25× rate of bromoxynil (70.1 g ae/ha) provided the greatest control of common lambsquarters (95%). The 0.25× rates of bromoxynil and oxyfluorfen (70.1 g ai/ha) provided the greatest control of redroot pigweed (93 and 85%, respectively). Microrate applications of metribuzin or acifluorfen did not effectively control common lambsquarters or redroot pigweed. In 2006, no onion injury was observed. However, in 2007, applications of oxyfluorfen resulted in approximately 15% injury, regardless of the herbicide rate or the number of applications. Plants outgrew symptoms by 4 wk after treatment and were similar to the untreated plants. Onion treated with oxyfluorfen had the greatest total yield, followed by onion treated with bromoxynil. Onion treated with acifluorfen had a greater total marketable bulb yield than onion treated with metribuzin, but yield was considered poor compared to the other herbicide treatments. Three microrate applications provided greater weed control and increased yield compared with two applications across herbicides and rates. Results suggest that microrate applications of bromoxynil and oxyfluorfen will provide early season broadleaf weed control in onion.


Sign in / Sign up

Export Citation Format

Share Document