scholarly journals Influence of Winter Rye and Preemergence Herbicides on Weed Control in No-tillage Zucchini Squash Production

2005 ◽  
Vol 15 (2) ◽  
pp. 238-243 ◽  
Author(s):  
S. Alan Walters ◽  
Scott A. Nolte ◽  
Bryan G. Young

The influence of `Elbon', `Maton', and `Wheeler' winter rye (Secale cereale) with or without herbicide treatments on weed control in no-tillage (NT) zucchini squash (Cucurbita pepo) was determined. `Elbon' or `Maton' produced higher residue biomass, greater soil coverage, and higher weed control compared with `Wheeler'. Although winter rye alone did not provide sufficient weed control (generally <70%), it provided substantially greater redroot pigweed (Amaranthus retroflexus) and smooth crabgrass (Digitaria ischaemum) control (regardless of cultivar used) compared with no winter rye at both 28 and 56 days after transplanting (DAT). No effect (P > 0.05) of winter rye cultivar on early or total squash yield was detected. Although applying clomazone + ethalfluralin to winter rye residues improved redroot pigweed control compared with no herbicide, the level of control was generally not adequate (<85% control) by 56 DAT. Treatments that included halosulfuron provided greater control of redroot pigweed than clomazone + ethalfluralin, and redroot pigweed control from halosulfuron treatments was similar to the weed-free control. However, regardless of year or cover crop, any treatment with halosulfuron caused unacceptable injury to zucchini squash plants which lead to reduced squash yield (primarily early yields). Insignificant amounts of squash injury (<10% due to stunting) resulted from clomazone + ethalfluralin in no-tillage plots during either year. Treatments with clomazone + ethalfluralin had early and total yields that were similar to those of the weed-free control, although this herbicide combination provided less weed control compared with the weed-free control.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 746D-747
Author(s):  
S. Alan Walters* ◽  
Scott A. Nolte ◽  
Joseph L. Matthews ◽  
Bryan G. Young

A field study was conducted in 2002 and 2003 to evaluate various herbicides (ethafluralin & clomazone, halosulfuron, and ethafluralin & clomazone + halosulfuron) with or without a winter rye (Secale cereale L.) cover crop in no-tillage `Daytona' cucumber (Cucumis sativus L.) production. All herbicides were applied preplant prior to cucumber transplanting, and no injury or stunting to cucumber was observed with any of the treatments evaluated at any time during the two growing seasons. Winter rye provided a significant advantage for weed control compared to the no cover crop production system. The combination of ethafluralin & clomazone + halosulfuron provided the greatest control of smooth crabgrass [Digitaria ischaemum (Schreb. Ex Schweig) Schreb. Ex Muhl.] and redroot pigweed (Amaranthus retroflexus L.). Ethafluralin & clomazone provided little redroot pig-weed control, while halosulfuron alone provided no control of smooth crabgrass. Winter rye enhanced cucumber yields in 2002 (drought conditions), while in 2003 (sufficient moisture and cooler soil temperatures), winter rye tended to suppress yields. During drought conditions (2002), treatments with ethafluralin & clomazone and ethafluralin & clomazone + halosulfuron produced similar yields. However, in 2003, treatments with ethafluralin & clomazone + halosulfuron produced greater yields than treatments with ethafluralin & clomazone. Overall, the handweed treatment provided the greatest yields, while the non-treated and halosulfuron only treatment provided the lowest yields. Winter rye will provide some additional weed control in a no-tillage vegetable production system, but may also provide negative effects by suppressing crop yield depending on seasonal growing conditions.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971C-971
Author(s):  
S. Alan Walters ◽  
Bryan G. Young ◽  
Ronald F. Krausz

A field study was conducted in 2002, 2003, and 2004 to evaluate various pre-emergence herbicides (ethafluralin & clomazone, ethafluralin & clomazone + halosulfuron, and ethafluralin & clomazone + imazamox) with or without a winter rye (Secale cereale L.) cover crop in tillage and no-tillage `Appalachian' pumpkin (Cucurbita pepo L.) production. All herbicides were applied within two days of seeding, and no injury was observed with any of the herbicides evaluated at any time during the three growing seasons. Early- and late-season control of all weed species [giant foxtail (Setaria faberi Herrm.), common cocklebur (Xanthium strumarium L.), redroot pigweed (Amaranthus retroflexus L.), and common waterhemp (Amaranthus rudis Sauer)] were highly correlated (0.47 ≤ r ≥ 0.86, P ≤ 0.01) with pumpkin yield and fruit size. The winter rye + no-tillage system provided greater weed control compared to the tillage systems and the no cover crop + no-tillage production system. Although winter rye alone had little influence on pumpkin yield, the no-tillage system improved pumpkin yield and fruit size compared to the tillage system. The two herbicide combinations (ethafluralin & clomazone + halosulfuron and ethafluralin & clomazone + imazamox) improved weed control and pumpkin yields compared to only ethafluralin & clomazone. Although this study indicated that the use of a high-residue winter rye cover crop in no-tillage pumpkin production will provide some weed control, the choice of pre-emergence herbicides is critical to maximize pumpkin productivity. No-tillage pumpkin production is feasible with proper herbicide use and timing, although current herbicide options will not provide optimal weed control.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971D-972
Author(s):  
Harlene M. Hatterman-Valenti ◽  
Carrie E. Schumacher ◽  
Collin P. Auwarter ◽  
Paul E. Hendrickson

Field studies were conducted at Absaraka, Carrington, and Oakes, N.D., in 2005 to evaluate early season broadleaf weed control and onion (Allium cepa L.) injury with herbicides applied preemergence to the crop. DCPA is a common preemergence herbicide used in onion. However, DCPA can be uneconomical in most high-weed situations, or the usage may be restricted due to possible groundwater contamination. Potential substitutes evaluated were bromoxynil, dimethenamid-P, and pendimethalin. Main broadleaf weeds were redroot pigweed (Amaranthus retroflexus L.) and common lambsquarters (Chenopodium album L.). In general, all herbicides, except bromoxynil, provided acceptable broadleaf weed control 4 weeks after treatment. The highest herbicide rate provided greater weed control compared with the lowest rate for each herbicide. However, onion height was also reduced with the highest herbicide rate. In addition, the two highest rates of dimethenamid-P reduced the onion stand compared with the untreated. A postemergence application of bromoxynil + oxyfluorfen + pendimethalin to onion at the four- to five-leaf stage controlled the few broadleaf weeds that escaped the preemergence treatments and provided residual control of mid- and late-season germinating broadleaf weeds at two of the three locations. Intense germination of redroot pigweed during July at the Oakes location reduced onion yield with all treatments compared with the hand-weeded check. In contrast, total onion yields with all herbicide treatments except the high rate of dimethenamid-P were similar to the hand-weeded check at Absaraka and Carrington.


2012 ◽  
Vol 26 (4) ◽  
pp. 731-739 ◽  
Author(s):  
Rick A. Boydston ◽  
Joel Felix ◽  
Kassim Al-Khatib

Field trials were conducted in 2009 and 2010 near Paterson, WA and Ontario, OR to evaluate weed control and potato tolerance to PRE-applied pyroxasulfone, saflufenacil, and KSU12800 herbicides. Pyroxasulfone at 0.09 to 0.15 kg ai ha−1and saflufenacil at 0.05 to 0.07 kg ai ha−1applied PRE alone or in tank mixes with several currently labeled herbicides did not injure potatoes at either site in both years. KSU12800 at 0.15 kg ai ha−1injured potatoes from 18 to 26% for a period of about 4 wk after emergence at Ontario both years. In addition, KSU12800 at 0.29 and 0.45 kg ha−1injured potatoes from 17 to 38% at 17 d after treatment (DAT) at Paterson in 2009. Pyroxasulfone at 0.15 kg ha−1controlled barnyardgrass, hairy nightshade, and redroot pigweed 96% or greater, but control of common lambsquarters was variable. Saflufenacil at 0.07 kg ha−1provided greater than 93% control of common lambsquarters, hairy nightshade, and redroot pigweed at both sites in 2010. KSU12800 at 0.15 kg ha−1controlled common lambsquarters, hairy nightshade, and redroot pigweed 99% or more at Ontario, but only 87 to 93% at Paterson in 2010. These herbicides did not reduce yield of U.S. no. 1 tubers or total tuber yields compared to standard labeled herbicide treatments when weed control was adequate.


Author(s):  
Roberta Boselli ◽  
Nico Anders ◽  
Andrea Fiorini ◽  
Cristina Ganimede ◽  
Nadia Faccini ◽  
...  

Highlights - One month after rye termination, the weed biomass under mulching is reduced by 4 times, compared with the control. - When rye is terminated early, the weed biomass production is reduced by the allelochemical content in rye tissues. - When rye is terminated late, the weed biomass production is reduced by the amount of rye biomass. - Lambsquarters, redroot pigweed, and purslane growth is inhibited by rye mulching, while velvetleaf is not affected.   Abstract Alternative strategies to control weeds are required at field level to reduce herbicides and derived pollution. Rye (Secale cereale L.) cultivation as cover crop is adopted mainly because of its allelopathic weed control, which takes place throughout a strong inhibition of germination and seedling growth in several grass and broad-leaved weeds.  The present study consisted of: i) a field trial, focused on evaluation of biomass production and allelochemical concentration in the biomass, and in situ weed control at 30 days after termination (with two termination timings: T1 - heading phase and T2 - 10 days later) of 8 rye varieties; ii) a pot experiment, focused on the inhibition effect of mulches derived by those 8 rye varieties on four summer weeds: velvetleaf (Abutilon theophrasti Med.), lambsquarters (Chenopodium album L.), redroot pigweed (Amaranthus retroflexus L.), and common purslane (Portulaca oleracea L).  Results showed that biomass production was the highest with Protector, closely followed by Primizia, Sito 70, Hellvus, Forestal, and Hymonta. In any case, rye mulching always reduced the weed biomass, especially with Fasto and Forestal. The allelochemical concentration in the biomass was the highest with Fasto and Forestal, and decreased on average from T1 to T2 (-38% for total BX and -57% for isovitexin). Conversely, the rye biomass production increased (on average + 77%) passing from T1 to T2. We found also that the reduction of weed biomass, compared with the control, is highly correlated with the allelochemical content in rye biomass in the case of T1 termination, while with the biomass production in the case of T2. In pots, a strong inhibitory effect on seedling growth due to rye mulching was observed for C. album (-76%), A. retroflexus (-56%), and P. olearcea (-84%), while not for A. theophrasti. We concluded that, whatever the variety, adopting rye as cover crop may be considered as a suitable practice to reduce weed pressure at the field level. Among all the varieties tested, Forestal and Protector showed the greatest weed suppression potential, as a consequence of high amount of allelochemicals production for Forestal, and high biomass production for Protector.


2013 ◽  
Vol 23 (3) ◽  
pp. 319-324
Author(s):  
Matthew A. Cutulle ◽  
Gregory R. Armel ◽  
James T. Brosnan ◽  
Dean A. Kopsell ◽  
William E. Klingeman ◽  
...  

Selective weed control in ornamental plant production can be difficult as many herbicides can cause unacceptable injury. Research was conducted to evaluate the tolerance of several ornamental species to applications of p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides for the control of problematic weeds in ornamental production. Mestotrione (0.09, 0.18, and 0.36 lb/acre), tembotrione (0.08, 0.16, and 0.32 lb/acre), and topramezone (0.016, 0.032, and 0.064 lb/acre) were applied alone postemergence (POST) in comparison with the photosystem II-inhibiting herbicide, bentazon (0.5 lb/acre). All herbicide treatments, with the exception of the two highest rates of tembotrione, caused less than 8% injury to ‘Noble Upright’ japanese holly (Ilex crenata) and ‘Compactus’ burning bush (Euonymus alatus). Similarly, no herbicide treatment caused greater than 12% injury to ‘Girard’s Rose’ azalea (Azalea). Conversely, all herbicides injured flowering dogwood (Cornus florida) 10% to 23%. Mesotrione- and tembotrione-injured ‘Radrazz’ rose (Rosa) 18% to 55%, compared with only 5% to 18% with topramezone. ‘Siloam June Bug’ daylily (Hemerocallis) injury with topramezone and tembotrione was less than 10%. Topramezone was the only herbicide evaluated that provided at least 93% control of redroot pigweed (Amaranthus retroflexus) with all application rates by 4 weeks after treatment (WAT). Redroot pigweed was controlled 67% to 100% with mesotrione and tembotrione by 4 WAT, but this activity was variable among application rates. Spotted spurge (Chamaesyce maculata) was only adequately controlled by mesotrione applications at 0.18 and 0.36 lb/acre, whereas chamberbitter (Phyllanthus urinaria) was not controlled sufficiently with any herbicide evaluated in these studies. Yellow nutsedge (Cyperus esculentus) was suppressed 72% to 87% with mesotrione applications at 0.18 lb/acre or higher and with bentazon at 0.5 lb/acre by 4 WAT. All other herbicide treatments provided less than 58% control of yellow nutsedge. In the second study, ‘Patriot’ hosta (Hosta), ‘Green Sheen’ pachysandra (Pachysandra terminalis), autumn fern (Dryopteris erythrosora), ‘Little Princess’ spirea (Spiraea japonica), ‘Green Giant’ arborvitae (Thuja plicata), and ‘Rosea’ weigela (Weigela florida) displayed no response to topramezone when applied at 0.024 and 0.095 lb/acre. Since 10 ornamental species in our studies exhibited less than 10% herbicidal response with all rates of at least one HPPD-inhibiting herbicide then it is possible that these herbicides may provide selective POST weed control in ornamental production systems.


2008 ◽  
Vol 26 (1) ◽  
pp. 39-44
Author(s):  
James E. Klett ◽  
David Staats ◽  
Teri Howlett ◽  
Matthew Rogoyski

Abstract Effectiveness of five preemergence herbicides was determined for four container-grown ornamental crops. Herbicides tested were Barricade (prodiamine); BroadStar (flumioxazin); Gallery (isoxaben); Scotts Ornamental Weedgrass Control (Scotts OWC) (pendimethalin); and Treflan (trifluralin). Four herbaceous plant species were utilized in this trial, namely, Guizhou sage (Artemisia lactiflora Wall. (Guizhou group)); hopflower oregano (Origanum libanoticum Boiss.); Daghestan sage (Salvia daghestanica Sosn.); and skullcap (Scutellaria resinosa Torr.). The seven weed species evaluated in this trial were annual bluegrass (Poa annua L.); barnyardgrass (Echinochloa crus-galli L.); yellow foxtail grass (Setaria glauca L.); purslane (Portulaca oleracea L.); common groundsel (Senecio vulgaris L.); redroot pigweed (Amaranthus retroflexus L.); and annual sowthistle (Sonchus oleraceus L.). Two controls, one with weeds and one without were also evaluated. The experiment was conducted in two locations: Fort Collins and Grand Junction, Colorado. Weed control levels varied across a range of herbicide treatments and ornamental species. Where differences among herbicides were observed, BroadStar and Treflan tended to be more effective than the other herbicides, while Gallery, Scotts OWC and Barricade, were less effective. Plants treated with Gallery often resulted in decreased dry weights; however, no visual phytotoxicity symptoms were observed with any herbicide treatments. Daghestan sage and skullcap were the crop species most adversely effected.


1999 ◽  
Vol 13 (3) ◽  
pp. 484-488 ◽  
Author(s):  
John W. Wilcut ◽  
John S. Richburg ◽  
F. Robert Walls

Field studies were conducted in 1992 and 1993 to evaluate AC 263,222 applied postemergence (POST) alone and as a mixture with atrazine or bentazon for weed control in imidazolinone-resistant corn. Nicosulfuron alone and nicosulfuron plus atrazine were also evaluated. Herbicide treatments were applied following surface-banded applications of two insecticides, carbofuran or terbufos at planting. Crop sensitivity to POST herbicides, corn yield, and weed control was not affected by insecticide treatments. AC 263,222 at 36 and 72 g ai/ha controlled rhizomatous johnsongrass 88 and 99%, respectively, which was equivalent to nicosulfuron applied alone or with atrazine. AC 263,222 at 72 g/ha controlled large crabgrass 99% and redroot pigweed 100%, and this level of control exceeded that obtained with nicosulfuron alone. AC 263,222 at 72 g/ha controlled sicklepod and morningglory species 99 and 98%, respectively. Nicosulfuron alone or with atrazine controlled these two species less than AC 263,222 at 72 g/ha. Addition of bentazon or atrazine to AC 263,222 did not improve control of any species compared with the higher rate of AC 263,222 at 72 g/ha applied alone. Corn yield increased over the untreated control when POST herbicide(s) were applied, but there were no differences in yield among herbicide treatments.


2019 ◽  
Vol 34 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Derek M. Whalen ◽  
Lovreet S. Shergill ◽  
Lyle P. Kinne ◽  
Mandy D. Bish ◽  
Kevin W. Bradley

AbstractCover crops have increased in popularity in midwestern U.S. corn and soybean systems in recent years. However, little research has been conducted to evaluate how cover crops and residual herbicides are effectively integrated together for weed control in a soybean production system. Field studies were conducted in 2016 and 2017 to evaluate summer annual weed control and to determine the effect of cover crop biomass on residual herbicide reaching the soil. The herbicide treatments consisted of preplant (PP) applications of glyphosate plus 2,4-D with or without sulfentrazone plus chlorimuron at two different timings, 21 and 7 d prior to soybean planting (DPP). Cover crops evaluated included winter vetch, cereal rye, Italian ryegrass, oat, Austrian winter pea, winter wheat, and a winter vetch plus cereal rye mixture. Herbicide treatments were applied to tilled and nontilled soil without cover crop for comparison. The tillage treatment resulted in low weed biomass at all collection intervals after both application timings, which corresponded to tilled soil having the highest sulfentrazone concentration (171 ng g−1) compared with all cover crop treatments. When applied PP, herbicide treatments applied 21 DPP with sulfentrazone had greater weed (93%) and waterhemp (89%) control than when applied 7 DPP (60% and 69%, respectively). When applied POST, herbicide treatments with a residual herbicide resulted in greater weed and waterhemp control at 7 DPP (83% and 77%, respectively) than at 21 DPP (74% and 61%, respectively). Herbicide programs that included a residual herbicide had the highest soybean yields (≥3,403 kg ha−1). Results from this study indicate that residual herbicides can be effectively integrated either PP or POST in conjunction with cover crop termination applications, but termination timing and biomass accumulation will affect the amount of sulfentrazone reaching the soil.


Sign in / Sign up

Export Citation Format

Share Document