Response of Chickpea Cultivars to Imidazolinone Herbicide Applied at Different Growth Stages

2016 ◽  
Vol 30 (3) ◽  
pp. 664-676 ◽  
Author(s):  
M. Laura Jefferies ◽  
Christian J. Willenborg ◽  
Bunyamin Tar'an

POST broadleaf weed control options in chickpea are very limited on the Northern Great Plains. Field experiments were conducted in 2012 and 2013 in Saskatchewan to evaluate the response of chickpea cultivars to imidazolinone (IMI) herbicides applied at different growth stages. Conventional cultivars ‘CDC Luna’ and ‘CDC Corinne’ were compared with IMI-resistant cultivars ‘CDC Alma’ and ‘CDC Cory’. Treatments comprised a combination of imazethapyr + imazamox herbicides at 30 and 60 g ai ha−1(1× and 2× rates, respectively) applied at the 2 to 4-, 5 to 8-, and 9 to 12-node growth stages. Visual injury estimates were > 50% for CDC Luna and CDC Corinne for all growth stage applications. Conventional cultivars also experienced height reduction and decreased rate of node development compared with the nontreated controls. Flowering and maturity of CDC Luna and CDC Corinne were delayed for herbicide applications at all growth stages; however, application at the 9 to 12-node stage caused the most severe delay. All treatments of IMI herbicide caused yield reduction in the conventional cultivars in 2013. In contrast, IMI-resistant cultivars CDC Alma and CDC Cory demonstrated no negative response at any growth stage of IMI herbicide application. Visual injury estimates were negligible, and height, node development, days to flowering, maturity, and yield did not differ significantly between IMI-treated plants and the respective controls. These results demonstrated the potential of in-crop use of IMI herbicide on resistant chickpea cultivars to control broadleaf weeds.

2016 ◽  
Vol 96 (1) ◽  
pp. 48-58
Author(s):  
M. Laura Jefferies ◽  
Christian J. Willenborg ◽  
Bunyamin Tar'an

Chickpea (Cicer arietinum L.) production in the Northern Great Plains is limited by very few broadleaf weed control options. Field experiments were conducted at two locations in 2012 and at three locations in 2013 in Saskatchewan, Canada, to examine the performance of the conventional and the imidazolinone (IMI) resistant chickpea cultivars to post-emergence application of imazamox or imazethapyr applied alone or in tank-mix. Treatments included imazamox (20 and 40 g a.i. ha−1), imazethapyr (50 and 100 g a.i. ha−1), and a tank-mixture of imazamox (35%) + imazethapyr (35%) (30 and 60 g a.i. ha−1). Conventional cultivars, CDC Luna and CDC Corinne, showed moderate to severe injury compared with resistant cultivars, CDC Alma and CDC Cory, which showed minimal to no injury. Plant height was arrested and node development slowed for conventional cultivars treated with IMI herbicides. This susceptibility to IMI herbicides was also noted with a delay in flowering and maturity. Despite a significant negative response, CDC Luna and CDC Corinne were able to recover throughout the growing season resulting in no yield loss from IMI treatments at all locations, except one. Resistant cultivars, CDC Alma and CDC Cory, demonstrated no significant injury from IMI herbicide compared with the untreated controls. These results show the potential to use IMI herbicides in the resistant chickpea cultivars, expanding the currently limited options for broadleaf weed control in chickpea cultivation.


2011 ◽  
Vol 91 (1) ◽  
pp. 117-124 ◽  
Author(s):  
R. A. Bueckert

Bueckert, R. A. 2011. Simulated hail damage and yield reduction in lentil. Can. J. Plant Sci. 91: 117–124. The severity of crop damage by hail is frequently estimated using equations derived from controlled experiments, but this approach has not been extended to the indeterminate pulse crop lentil (Lens culinaris L.). The objective was to simulate hail damage on two lentil cultivars, and estimate yield reduction for use in the Crop Insurance Industry. Hail damage was simulated by controlled canopy crushing on two cultivars, CDC Blaze and CDC Sedley at 4 location-years in Saskatchewan in 2006 and 2007. Plots received simulated damage as the untreated control (0%), 30, 60 or 90% canopy height reduction by crushing at each of four growth stages: vegetative, early flowering, pod-filling, and physiological maturity. As damage intensity increased from 0 to 90%, yield decreased in both cultivars. Most yield reduction (>65%) was seen when damage occurred in reproductive growth. Yield reduction for lentil damaged in vegetative growth was described by linear models, and the reproductive stages by quadratic models. The equations will help improve hail damage assessment in lentil on the Northern Great Plains.


Weed Science ◽  
1978 ◽  
Vol 26 (5) ◽  
pp. 471-475 ◽  
Author(s):  
D. E. Auch ◽  
W. E. Arnold

Field experiments were conducted from 1974 to 1977 at Redfield and Centerville, South Dakota, to evaluate the tolerance of soybeans [Glycine max(L.) Merr.] at different growth stages and five varieties of soybeans to dicamba (3,6-dichloro-o-anisic acid) and to determine dicamba residue in the foliage. Yield reduction occurred from applications when soybeans were flowering. Furthermore, germination was reduced by dicamba application at pod-fill. Dicamba residue was detected in foliage 7 days but not 18 days after application. Extent of dicamba use and drift occurrence was determined by a telephone survey of 159 farmers. Thirty-one percent of the farmers surveyed used dicamba in 1976.


2003 ◽  
Vol 83 (2) ◽  
pp. 319-326 ◽  
Author(s):  
B. L. Johnson

Growth compensation of dwarf sunflower (Helianthus annuus L.) hybrids to low initial stands, later stand losses, or plant defoliation has not been reported regarding replanting decisions and crop insurance yield loss assessment. Three experiments were conducted to study the affect of stand reduction, defoliation, and row spacing on dwarf sunflower yield and quality when grown in eastern North Dakota. Experiment 1 evaluated stand reduction (0, 25, 50 and 75%) applied at growth stages (V4, R1 and R6) in 15, 45 and 76 cm spaced rows. Row spacing interactions with stand reduction and growth stage were not significant for yield indicating growth stage and stand reduction effects on yield response were independent of row spacing. In exp. 2, significant growth stage (V4, V8, R1, R2, R3, R5 and R6) by stand reduction (0, 12, 25, 37, 50, 62 and 75%) interaction showed stand reduction at vegetative growth stages not influencing yield, but as maturity progressed yield reductions became greater with increased stand reduction. Achene weight increased with increasing stand reduction at vegetative and early reproductive stages. A reciprocal relationship was noted between achene weight and achene oil content where oil content decreased as achene weight increased. Interaction of growth stage (R1 and R6) and defoliation (0, 25, 50, 75 and 100%) in exp. 3 indicated greater reduction in yield, test weight, 1000-achene weight, and achene oil conte nt as defoliatin increased at growth stage R6. Yield compensating ability of dwarf sunflower is dependent on type and level of damage and growth stage of occurrence, with total yield reduction considering all effects. Key words: Sunflower, Helianthus annuus L., row spacing, stand reduction, defoliation


Author(s):  
Brandt Berghuis ◽  
Andrew Friskop ◽  
Michelle Gilley ◽  
Jessica Halvorson ◽  
Bryan Hansen ◽  
...  

Sunflower rust, caused by Puccinia helianthi, is an economically and globally important disease of sunflower. Two types of sunflowers are produced in the US Northern Great Plains; the oilseed type and the confection type. Although approximately 80% of the acreage in this region is planted as the oilseed type sunflower, fungicide efficacy and timing studies have been conducted primarily on the more rust-susceptible confection type. A total of ten sunflower rust efficacy field experiments were conducted on oilseed type and confectionary type hybrid trials from 2016-2018. Eleven fungicides from three FRAC groups were evaluated for efficacy and protection of yield. Severity differences among fungicide treatments were identified in both confection and oilseed type sunflower trials. A combined analysis of all confection field trials (five) indicated that rust severity was lower in all fungicide treatments as compared to the non-treated control. Despite rust severity levels below the fungicide action threshold for confection sunflower, seven of the eleven fungicide treatments had yield higher than the non-treated control. In oilseed trials, rust severity was lower in all fungicide treatments as compared to the non-treated control, similar to the findings of the confection type. Rust severity was too low to detect yield differences in oilseed trials. Additional work is needed to elucidate yield-loss potential on oilseed type sunflower and refine the fungicide action threshold on confection type sunflower.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 132-136 ◽  
Author(s):  
Xinglong Chen ◽  
Yulin Jia ◽  
Bo Ming Wu

Rice blast, caused by the fungus Magnaporthe oryzae, is the most damaging disease for rice worldwide. However, the reactions of rice to M. oryzae at different growth stages are largely unknown. In the present study, two temperate japonica rice cultivars, M-202 and Nipponbare, were inoculated synchronously at different vegetative growth stages, V1 to V10. Plants of M-202 at each stage from V1 to reproductive stage R8 were inoculated with M. oryzae race (isolate) IB-49 (ZN61) under controlled conditions. Disease reactions were recorded 7 days postinoculation by measuring the percentage of diseased area of all leaves, excluding the youngest leaf. The results showed that the plants were significantly susceptible at the V1 to V4 stages with a disease severity of 26.7 to 46.8% and disease index of 18.62 to 37.76 for M-202. At the V1 to V2 stages, the plants were significantly susceptible with a disease a severity of 28.6 to 39.3% and disease index of 23.65 to 29.82 for Nipponbare. Similar results were observed when plants of M-202 were inoculated at each growth stage with a disease severity of 29.7 to 60.6% and disease index of 21.93 to 59.25 from V1 to V4. Susceptibility decreased after the V5 stage (severity 4.6% and index 2.17) and became completely resistant at the V9 to V10 stages and after the reproductive stages, suggesting that plants have enhanced disease resistance at later growth stages. These findings are useful for managing rice blast disease in commercial rice production worldwide.


2019 ◽  
Vol 99 (4) ◽  
pp. 437-443
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Amit J. Jhala ◽  
Peter H. Sikkema

A study consisting of 13 field experiments was conducted during 2014–2016 in southwestern Ontario and southcentral Nebraska (Clay Center) to determine the effect of late-emerging weeds on the yield of glyphosate-resistant soybean. Soybean was maintained weed-free with glyphosate (900 g ae ha−1) up to the VC (cotyledon), V1 (first trifoliate), V2 (second trifoliate), V3 (third trifoliate), V4 (fourth trifoliate), and R1 (beginning of flowering) growth stages, after which weeds were allowed to naturally infest the soybean plots. The total weed density was reduced to 24%, 63%, 67%, 72%, 76%, and 92% in Environment 1 (Exeter, Harrow, and Ridgetown) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 soybean growth stages, respectively. The total weed biomass was reduced by 33%, 82%, 95%, 97%, 97%, and 100% in Environment 1 (Exeter, Harrow, and Ridgetown) and 28%, 100%, 100%, 100%, 100%, and 100% in Environment 2 (Clay Center) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 stages, respectively. The critical weed-free periods for a 2.5%, 5%, and 10% yield loss in soybean were the V1–V2, VC–V1, and VC–V1 soybean stages in Environment 1 (Exeter, Harrow, and Ridgetown) and V2–V3, V2–V3, and V1–V2 soybean stages in Environment 2 (Clay Center), respectively. For the weed species evaluated, there was a minimal reduction in weed biomass (5% or less) when soybean was maintained weed-free beyond the V3 soybean growth stage. These results shows that soybean must be maintained weed-free up to the V3 growth stage to minimize yield loss due to weed interference.


2019 ◽  
Vol 33 (2) ◽  
pp. 321-328 ◽  
Author(s):  
John T. Buol ◽  
Daniel B. Reynolds ◽  
Darrin M. Dodds ◽  
J. Anthony Mills ◽  
Robert L. Nichols ◽  
...  

AbstractRecent commercialization of auxin herbicide–based weed control systems has led to increased off-target exposure of susceptible cotton cultivars to auxin herbicides. Off-target deposition of dilute concentrations of auxin herbicides can occur on cotton at any stage of growth. Field experiments were conducted at two locations in Mississippi from 2014 to 2016 to assess the response of cotton at various growth stages after exposure to a sublethal 2,4-D concentration of 8.3 g ae ha−1. Herbicide applications occurred weekly from 0 to 14 weeks after emergence (WAE). Cotton exposure to 2,4-D at 2 to 9 WAE resulted in up to 64% visible injury, whereas 2,4-D exposure 5 to 6 WAE resulted in machine-harvested yield reductions of 18% to 21%. Cotton maturity was delayed after exposure 2 to 10 WAE, and height was increased from exposure 6 to 9 WAE due to decreased fruit set after exposure. Total hand-harvested yield was reduced from 2,4-D exposure 3, 5 to 8, and 13 WAE. Growth stage at time of exposure influenced the distribution of yield by node and position. Yield on lower and inner fruiting sites generally decreased from exposure, and yield partitioned to vegetative or aborted positions and upper fruiting sites increased. Reductions in gin turnout, micronaire, fiber length, fiber-length uniformity, and fiber elongation were observed after exposure at certain growth stages, but the overall effects on fiber properties were small. These results indicate that cotton is most sensitive to low concentrations of 2,4-D during late vegetative and squaring growth stages.


1999 ◽  
Vol 132 (4) ◽  
pp. 417-424 ◽  
Author(s):  
C. M. KNOTT

The response of two cultivars of dry harvest field peas (Pisum sativum), Solara and Bohatyr, to irrigation at different growth stages was studied on light soils overlying sand in Nottinghamshire, England in 1990, when the spring was particularly dry, in 1991 which had a dry spring and summer and in contrast, 1992, when rainfall was greater compared with the long-term (40 year) mean.Solara, short haulmed and semi-leafless was more sensitive to drought than the tall conventional-leaved cultivar Bohatyr and gave a greater yield response to irrigation, particularly at the vegetative growth stage in the first two dry years 1990 and 1991, of 108% and 55% respectively, compared with unirrigated plots. Bohatyr was less sensitive to the timing of single applications.In all years, peas irrigated throughout on several occasions produced the highest yields, but this was the least efficient use of water.


1997 ◽  
Vol 87 (12) ◽  
pp. 1226-1232 ◽  
Author(s):  
D. Shtienberg

The effects of Rhizopus head rot, caused by Rhizopus oryzae, on the yield of confectionery sunflower and its quality were studied in field experiments conducted from 1994 to 1996. The extent of yield loss was related to the crop growth stage at inoculation. When heads were inoculated at the budding stage, loss was not apparent, because inoculated heads were not infected. When inoculated at the anthesis stage, loss was relatively high (42.5 to 99.1%), and both the number of achenes per head and the individual achene weight were reduced. When heads were inoculated at the seed development stage, yield was not reduced significantly (although the entire receptacle was rotted). Effects of Rhizopus head rot on measures of yield quality were examined as well. Inoculation with R. oryzae did not affect the size of the achenes at any crop growth stage. In contrast, the incidence of discolored achenes (an external sign of nutmeats with a bitter off-flavor) was affected by the disease at all crop growth stages. A survey in eight commercial fields from 1992 to 1996 found that, by the end of the season, incidence of disease ranged from 2.3 to 17.4%. However, since disease intensified late, resultant yield losses were minor and did not exceed 3.1%. Loss figures were estimated by means of a model that was developed and validated in the field experiments. The disease did affect the incidence of discolored achenes. Thus, the conclusion drawn is that the effects of Rhizopus head rot in confectionery sunflower on crop yield is of minimal concern, at least when disease intensifies late, as was the case in the studied fields, but management of the disease should be considered in some situations. The objectives would be to prevent a reduction in yield quality, not yield quantity.


Sign in / Sign up

Export Citation Format

Share Document