A Correlation-Based Methodology to Predict the Flow Structure of Flows Emanating from Cylindrical Holes with Application to Film Cooling

2010 ◽  
Vol 41 (6) ◽  
pp. 687-699 ◽  
Author(s):  
Tilman auf dem Kampe
Author(s):  
Radheesh Dhanasegaran ◽  
Girish Venkatachalapathy ◽  
Nagarajan Gnanasekaran

A computational investigation is carried out to understand the film cooling performance and flow phenomenon on a pressure side of gas turbine airfoil. A specific geometry with multiple rows of cylindrical holes is considered on the pressure surface and opposite to which a flat surface is kept so as to avoid effect of imposed flow conditions. Meshing of the present model is done by using GAMBIT. Computations are carried out with K-epsilon Realizable model available in the commercial code FLUENT. The film cooling performance is discussed with flow structure followed by the effectiveness distribution on the pressure surface. The blowing ratio is varied from 0.4–2.4 and it is found that, at very low blowing ratio cases in the initial part of the pressure surface higher effectiveness values are observed but at higher blowing ratio these values become very low whereas close to the trailing edge side the effectiveness distribution is just the reverse. It was found that the optimum blowing ratio was close to unity where better flow and temperature distribution were observed.


2015 ◽  
Vol 3 (2) ◽  
pp. 15-27
Author(s):  
Ahmed A. Imram ◽  
Humam K. Jalghef ◽  
Falah F. Hatem

     The effect of introducing ramp with a cylindrical slot hole on the film cooling effectiveness has been investigated experimentally and numerically. The film cooling effectiveness measurements are obtained experimentally. A test study was performed at a single mainstream with Reynolds number 76600 at three different coolant to mainstream blowing ratios 1.5, 2, and 3. Numerical simulation is introduced to primarily estimate the best ramp configurations and to predict the behavior of the transport phenomena in the region linked closely to the interaction between the coolant air injection and the hot air mainstram flow. The results showed that using ramps with trench cylindrical holes would enhanced the overall film cooling effectiveness by 83.33% compared with baseline model at blowing ratio of 1.5, also  the best overall flim cooling effectevness was obtained at blowing ratio of 2 while it is reduced at blowing ratio of 3.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.


Author(s):  
Shiou-Jiuan Li ◽  
Jiyeon Lee ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

The paper presents the swirl purge flow on platform and a modeled land-based turbine rotor blade suction surface. Pressure sensitive paint (PSP) mass transfer technique provides detailed film cooling effectiveness distribution on platform and phantom cooling effectiveness on blade suction surface. Experiments have completed in a low speed wind tunnel facility with a five blade linear cascade. The inlet Reynolds number based on the chord length is 250,000. Swirl purge flow is simulated by coolant injection through fifty inclined cylindrical holes ahead of the blade leading edge row. Coolant injections from cylindrical holes go through nozzle endwall and a dolphin nose axisymmetric contour before reach platform and blade suction surface. Different “coolant injection angles” and “coolant injection velocity to cascade inlet velocity” results in various swirl ratios to simulate real engine conditions. Simulated swirl purge flow uses coolant injection angles of 30, 45, and 60 degrees to produce swirl ratios of 0.4, 0.6, and 0.8, respectively. Traditional purge flow has coolant injection angle of 90 degree to generate swirl ratio of 1. Coolant to mainstream mass flow rate ratio (MFR) is 0.5%, 1.0% and 1.5% for all swirl ratios. Coolant to mainstream density ratio maintains at 1.5 to match engine conditions. Most of the swirl purge and purge coolant approaches platform, but small amount of the coolant migrates to blade suction surface. Swirl ratio of 0.4 has highest relative motion between rotor and coolant and severely decreases film cooling and phantom cooling effectiveness. Higher MFR of 1% and 1.5% cases suffer from apparent decrement of the effectiveness while increasing relative motion.


2019 ◽  
Vol 36 (4) ◽  
pp. 425-433
Author(s):  
Wei Zhang ◽  
Shuai Zhou ◽  
Zhuang Wu ◽  
Guangchao Li ◽  
Zhihai Kou

Abstract Film cooling performance of one row of cylindrical holes integrated with saw-tooth slots was numerically studied at blowing ratios of 0.5, 1.0 1.5 and 2.0 respectively. The saw-tooth slot concept combines the advantages both of easy machining for the slot and of the high film cooling effectiveness caused by the anti-vortex induced by the shaped hole. The film holes have an inclination angles of 30°, length to diameter ratio of 4 and pitch to diameter ratio of 3. The corner angles of the saw-tooth are 60°, 90°, 120°, 150° and 180° respectively. The 180° corner angle corresponds to a standard transverse slot. The emphasis of this other is on the influence of the corner angles of the saw-tooth on film cooling effectiveness. The flow field and thermal field were obtained to explain the mechanism of film cooling performance improvement by the saw-tooth slot. The results show that the numerical data agrees with the experimental values for the cylindrical holes. Relatively small corner angles generate uniform local film cooling effectiveness and high spanwise averaged film cooling effectiveness due to the coolant ejected from the hole smoothly flowing into the slot. The effect of corner angles strongly depends on blowing ratios. The increase of x/D decreases the differences of film cooling effectiveness between various corner angles. At low blowing ratios, an anti-vortex can be found with the spanwise angle of 60° and 120°. At high blowing ratios, an anti-vortex can be found with the spanwise angle of 60°.


Author(s):  
James R. Winka ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Michael E. Crawford ◽  
Emily J. Boyd

Surface curvature is known to have significant effects on film cooling performance, with convex curvature inducing increased film effectiveness and concave curvature causing decreased film effectiveness. Generally, these curvature effects have been presumed to scale with 2r/d at the film cooling hole location, where r is the radius of curvature and d is coolant hole diameter. In this study, the validity of this scaling of curvature effects are examined by performing experiments in regions of large and low curvature on a model vane. Single rows of cylindrical holes were placed at various locations along the high curvature section of the suction side of the vane. For the first series of experiments, a single row of holes was placed at two locations with different local surface curvature. The coolant hole diameters were then adjusted to match 2r/d values. Results from these experiments showed that there was better correspondence of film performance when using the 2r/d scaling, but there was not an exact matching of performance. A second series of experiments focused on evaluating the effects of curvature downstream of the coolant holes. One row of holes was placed at a position upstream of the highest curvature, while another row was placed at a downstream position such that the radius of curvature was equivalent for the two rows of holes. Results indicated that the local radius of curvature is not sufficient in understanding the performance of film cooling. Instead, the curvature envelope downstream of the coolant holes plays a significant role on the performance of film cooling for cylindrical holes.


Author(s):  
Benoit Laveau ◽  
Reza S. Abhari

Shaped holes are used on modern turbine blades for their higher performance and greater lateral coolant spreading compared to classic streamwise angled holes. This study incorporates measurements and observations from a shaped hole geometry undertaken at ETH Zurich in which a row of laterally expanded diffusely shaped holes is compared to the classic row of streamwise round holes. Infrared measurements provide high-resolution data of the adiabatic effectiveness and three dimensional velocity measurements are carried out through stereoscopic Particle Image Velocimetry. Both experiments are run for similar operating conditions allowing a comparison to be made between the flow structure and the thermal performance. The adiabatic effectiveness is seen to be higher for shaped holes compared to cylindrical holes: in particular the laterally averaged values are higher due to a larger lateral spreading of the coolant. The work presented here shows the first results on the limited influence of the density ratio on the thermal performance. The performance is also influenced by the vortical structure. The typical counter-rotating vortex pair which is completed by another pair of anti-kidney vortices is observed with their strength being clearly reduced compared to the example with cylindrical holes. The doubled structure and the reduced strength change the behavior of the jet, explaining the higher performance of a jet with shaped holes. The vertical motion leading to lift-off is reduced, so the jet remains close to the surface even at high blowing rates. The goal of this article is to present data for the thermal performance and flow field of shaped holes and then explain the relationship between the two.


2018 ◽  
Vol 35 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Guangchao Li ◽  
Yukai Chen ◽  
Zhihai Kou ◽  
Wei Zhang ◽  
Guochen Zhang

AbstractThe trunk-branch hole was designed as a novel film cooling concept, which aims for improving film cooling performance by producing anti-vortex. The trunk-branch hole is easily manufactured in comparison with the expanded hole since it consists of two cylindrical holes. The effect of turbulence on the film cooling effectiveness with a trunk-branch hole injection was investigated at the blowing ratios of 0.5, 1.0, 1.5 and 2.0 by numerical simulation. The turbulence intensities from 0.4 % to 20 % were considered. The realizable$k - \varepsilon $turbulence model and the enhanced wall function were used. The more effective anti-vortex occurs at the low blowing ratio of 0.5 %. The high turbulence intensity causes the effectiveness evenly distributed in the spanwise direction. The increase of turbulence intensity leads to a slight decrease of the spanwise averaged effectiveness at the low blowing ratio of 0.5, but a significant increase at the high blowing ratios of 1.5 and 2.0. The optimal blowing ratio of the averaged surface effectiveness is improved from 1.0 to 1.5 when the turbulence intensity increases from 0.4 % to 20 %.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

Secondary holes to a main film cooling hole are used to improve film cooling performance by creating anti-kidney vortices. The effects of injection angle of the secondary holes on both film cooling effectiveness and surrounding thermal and flow fields are investigated in this numerical study. Two kinds of primary hole shapes are adopted. One is a cylindrical hole, the other is a horn-shaped hole which is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. Two smaller cylindrical holes, the secondary holes, are located symmetrically about the centerline and downstream of the primary hole. Three compound injection angles (α = 30°, 45° and 60°, β = 30°) of the secondary holes are analyzed while the injection angle of the primary hole is kept at 45°. Cases with various blowing ratios are computed. It is shown from the simulation that cooling effectiveness of secondary holes with a horn-shaped primary hole is better than that with a cylindrical primary hole, especially at high blowing ratios. With a cylindrical primary hole, increasing inclination angle of the secondary holes provides better cooling effectiveness because the anti-kidney vortices created by shallow secondary holes cannot counteract the kidney vortex pairs adequately, enhancing mixing of main flow and coolant. For secondary holes with a horn-shaped primary hole, large secondary hole inclination angles provide better cooling performance at low blowing ratios; but, at high blowing ratios, secondary holes with small inclination angles are more effective, as the film coverage becomes wider in the downstream area.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Sign in / Sign up

Export Citation Format

Share Document