THE PLASMA SPOUTED BED REACTOR FOR APPLICATIONS IN METALLURGY AND MATERIAL SYNTHESIS

Author(s):  
Gilles Flamant ◽  
A. Bamrim
2018 ◽  
Author(s):  
Subhodeep Banerjee ◽  
Chris Guenther ◽  
William A. Rogers
Keyword(s):  

2019 ◽  
Vol 224 ◽  
pp. 930-949 ◽  
Author(s):  
Yanguang Wu ◽  
Bowen Lu ◽  
Tao Bai ◽  
Hao Wang ◽  
Feipeng Du ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 13909-13919
Author(s):  
Shaobo Li ◽  
Zhongchen Lu ◽  
Bin Yuan ◽  
Renzong Hu ◽  
Min Zhu

Author(s):  
Matheus B. Braga ◽  
Tiago D. Martins ◽  
Vitor C. A. Louzi ◽  
Rafael L. Giannella ◽  
Vitor K. Fujita ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 44
Author(s):  
Francesca Picca ◽  
Angela Di Pietro ◽  
Mario Commodo ◽  
Patrizia Minutolo ◽  
Andrea D’Anna

In this study, flame-formed carbon nanoparticles of different nanostructures have been produced by changing the flame temperature. Raman spectroscopy has been used for the characterization of the carbon nanoparticles, while the particle size has been obtained by online measurements made by electrical mobility analysis. The results show that, in agreement with recent literature data, a large variety of carbon nanoparticles, with a different degree of graphitization, can be produced by changing the flame temperature. This methodology allows for the synthesis of very small carbon nanoparticles with a size of about 3-4 nm and with different graphitic orders. Under the perspective of the material synthesis process, the variable-temperature flame-synthesis of carbon nanoparticles appears as an attractive procedure for a cost-effective and easily scalable production of highly tunable carbon nanoparticles.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2276
Author(s):  
Zhao Chen ◽  
Lin Jiang ◽  
Mofan Qiu ◽  
Meng Chen ◽  
Rongzheng Liu ◽  
...  

Particle adhesion is of great importance to coating processes due to its effect on fluidization. Currently, Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) has become a powerful tool for the study of multiphase flows. Various contact force models have also been proposed. However, particle dynamics in high temperature will be changed with particle surface properties changing. In view of this, an adhesion model is developed based on approaching-loading-unloading-detaching idea and particle surface change under high temperature in this paper. Analyses of the adhesion model are given through two particle collision process and validated by experiment. Effects of inlet gas velocity and adhesion intensity on spouted bed dynamics are investigated. It is concluded that fluidization cycle will be accelerated by adhesion, and intensity of fluidization will be marginally enhanced by slight adhesion. Within a certain range, increasing inlet gas velocity will lead to strong intensity of particle motion. A parameter sensitivity comparison of linear spring-damping model and Hertz-Mindlin Model is given, which shows in case of small overlaps, forces calculated by both models have little distinction, diametrically opposed to that of large overlaps.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahrbanoo Hamedi ◽  
M. Mehdi Afsahi ◽  
Ali Riahi-Madvar ◽  
Ali Mohebbi

AbstractThe main advantages of the dried enzymes are the lower cost of storage and longer time of preservation for industrial applications. In this study, the spouted bed dryer was utilized for drying the garden radish (Raphanus sativus L.) root extract as a cost-effective source of the peroxidase enzyme. The response surface methodology (RSM) was used to evaluate the individual and interactive effects of main parameters (the inlet air temperature (T) and the ratio of air flow rate to the minimum spouting air flow rate (Q)) on the residual enzyme activity (REA). The maximum REA of 38.7% was obtained at T = 50 °C and Q = 1.4. To investigate the drying effect on the catalytic activity, the optimum reaction conditions (pH and temperature), as well as kinetic parameters, were investigated for the fresh and dried enzyme extracts (FEE and DEE). The obtained results showed that the optimum pH of DEE was decreased by 12.3% compared to FEE, while the optimum temperature of DEE compared to FEE increased by a factor of 85.7%. Moreover, kinetic parameters, thermal-stability, and shelf life of the enzyme were considerably improved after drying by the spouted bed. Overall, the results confirmed that a spouted bed reactor can be used as a promising method for drying heat-sensitive materials such as peroxidase enzyme.


RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 38906-38912 ◽  
Author(s):  
Machhindra S. Bhalerao ◽  
Anand V. Patwardhan ◽  
Manohar A. Bhosale ◽  
Vaishali M. Kulkarni ◽  
Bhalchandra M. Bhanage

A facile approach for the synthesis of a novel epoxidised soybean oil–Cu/Cu2O (ESO–Cu/Cu2O) bio-nanocomposite material via ultrasound irradiation with antibacterial activity was investigated.


Sign in / Sign up

Export Citation Format

Share Document