Backscattering linear depolarization ratio of laboratory generated ice clouds composed of pristine and complex-shaped ice crystals

Author(s):  
Martin Schnaiter ◽  
Roland Schon ◽  
Ottmar Mohler ◽  
Harald Saathoff ◽  
Robert Wagner
2009 ◽  
Vol 26 (11) ◽  
pp. 2293-2309 ◽  
Author(s):  
Yongxiang Hu ◽  
David Winker ◽  
Mark Vaughan ◽  
Bing Lin ◽  
Ali Omar ◽  
...  

Abstract The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud phase relationship, more constraints are necessary to uniquely determine cloud phase. Based on theoretical and modeling studies, an improved cloud phase determination algorithm has been developed. Instead of depending primarily on layer-integrated depolarization ratios, this algorithm differentiates cloud phases by using the spatial correlation of layer-integrated attenuated backscatter and layer-integrated particulate depolarization ratio. This approach includes a two-step process: 1) use of a simple two-dimensional threshold method to provide a preliminary identification of ice clouds containing randomly oriented particles, ice clouds with horizontally oriented particles, and possible water clouds and 2) application of a spatial coherence analysis technique to separate water clouds from ice clouds containing horizontally oriented ice particles. Other information, such as temperature, color ratio, and vertical variation of depolarization ratio, is also considered. The algorithm works well for both the 0.3° and 3° off-nadir lidar pointing geometry. When the lidar is pointed at 0.3° off nadir, half of the opaque ice clouds and about one-third of all ice clouds have a significant lidar backscatter contribution from specular reflections from horizontally oriented particles. At 3° off nadir, the lidar backscatter signals for roughly 30% of opaque ice clouds and 20% of all observed ice clouds are contaminated by horizontally oriented crystals.


2012 ◽  
Vol 51 (7) ◽  
pp. 1426-1439 ◽  
Author(s):  
Chen Zhou ◽  
Ping Yang ◽  
Andrew E. Dessler ◽  
Yongxiang Hu ◽  
Bryan A. Baum

AbstractData from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) indicate that horizontally oriented ice crystals (HOIC) occur frequently in both ice and mixed-phase clouds. When compared with the case for clouds consisting of randomly oriented ice crystals (ROIC), lidar measurements from clouds with HOIC, such as horizontally oriented hexagonal plates or columns, have stronger backscatter signals and smaller depolarization ratio values. In this study, a 3D Monte Carlo model is developed for simulating the CALIOP signals from clouds consisting of a mixture of quasi HOIC and ROIC. With CALIOP’s initial orientation with a pointing angle of 0.3° off nadir, the integrated attenuated backscatter is linearly related to the percentage of HOIC but is negatively related to the depolarization ratio. At a later time in the CALIOP mission, the pointing angle of the incident beam was changed to 3° off nadir to minimize the signal from HOIC. In this configuration, both the backscatter and the depolarization ratio are similar for clouds containing HOIC and ROIC. Horizontally oriented columns with two opposing prism facets perpendicular to the lidar beam and horizontally oriented plates show similar backscattering features, but the effect of columns is negligible in comparison with that of plates because the plates have relatively much larger surfaces facing the incident lidar beam. From the comparison between the CALIOP simulations and observations, it is estimated that the percentage of quasi-horizontally oriented plates ranges from 0% to 6% in optically thick mixed-phase clouds, from 0% to 3% in warm ice clouds (>−35°C), and from 0% to 0.5% in cold ice clouds.


2020 ◽  
Vol 12 (13) ◽  
pp. 2144 ◽  
Author(s):  
Zbyněk Sokol ◽  
Jana Minářová ◽  
Ondřej Fišer

The distribution of hydrometeors in thunderstorms is still under investigation as well as the process of electrification in thunderclouds leading to lightning discharges. One indicator of cloud electrification might be high values of the Linear Depolarization Ratio (LDR) at higher vertical levels. This study focuses on LDR values derived from vertically pointing cloud radars and the distribution of five hydrometeor species during 38 days with thunderstorms which occurred in 2018 and 2019 in Central Europe, close to our radar site. The study shows improved algorithms for de-aliasing, the derivation of vertical air velocity and the classification of hydrometeors in clouds using radar data. The comparison of vertical profiles with observed lightning discharges in the vicinity of the radar site (≤1 km) suggested that cloud radar data can indirectly identify “lightning” areas by high LDR values observed at higher gates due to the alignment of ice crystals, likely because of an intensified electric field in thunderclouds. Simultaneously, the results indicated that at higher gates, there is a mixture of several hydrometeor species, which suggests a well-known electrification process by collisions of hydrometeors.


2014 ◽  
Vol 7 (11) ◽  
pp. 3773-3781 ◽  
Author(s):  
J. Gasteiger ◽  
V. Freudenthaler

Abstract. A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the aerosol optical properties that is sufficient for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of aeroplanes, was retrieved from measurements of such lidar systems in southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on those of MULIS and POLIS of the Ludwig-Maximilians-Universität in Munich (Germany) which measure the linear depolarization ratio at 355 and 532 nm with high accuracy. The improvements are determined by comparing uncertainties from retrievals applied to simulated measurements of this lidar setup with uncertainties obtained when the depolarization at 1064 nm is added to this setup. The simulated measurements are based on real lidar measurements of transported Eyjafjallajökull volcano ash. It is found that additional 1064 nm depolarization measurements significantly reduce the uncertainty of the retrieved mass concentration and effective particle size. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. The size dependence of the depolarization does not vary strongly with refractive index, thus we expect similar benefits for the retrieval in case of measurements of other volcanic ash compositions and also for transported desert dust. For the retrieval of the single scattering albedo, which is relevant to the radiative transfer in aerosol layers, no significant improvements were found.


2014 ◽  
Vol 7 (5) ◽  
pp. 5095-5115
Author(s):  
J. Gasteiger ◽  
V. Freudenthaler

Abstract. A better quantification of aerosol microphysical and optical properties is required to improve the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the huge diversity of aerosol composition and of their shape and size distribution, and due to the complexity of the relation between the microphysical and optical properties. Lidar remote sensing is a valuable tool to gain spatially and temporally resolved information on aerosol properties. Advanced lidar systems provide sufficient information on the aerosol optical properties for the retrieval of important aerosol microphysical properties. Recently, the mass concentration of transported volcanic ash, which is relevant for the flight safety of airplanes, was retrieved from measurements of such lidar systems in Southern Germany. The relative uncertainty of the retrieved mass concentration was on the order of ±50%. The present study investigates improvements of the retrieval accuracy when the capability of measuring the linear depolarization ratio at 1064 nm is added to the lidar setup. The lidar setups under investigation are based on the setup of MULIS and POLIS of the LMU in Munich which measure the linear depolarization ratio at 355 nm and 532 nm with high accuracy. By comparing results of retrievals applied to simulated lidar measurements with and without the depolarization at 1064 nm it is found that the availability of 1064 nm depolarization measurements reduces the uncertainty of the retrieved mass concentration and effective particle size by a factor of about 2–3. This significant improvement in accuracy is the result of the increased sensitivity of the lidar setup to larger particles. However, the retrieval of the single scattering albedo, which is relevant for the radiative transfer in aerosol layers, does hardly benefit from the availability of 1064 nm depolarization measurements.


2020 ◽  
Vol 12 (13) ◽  
pp. 2094
Author(s):  
Chong Cheng ◽  
Fan Yi

Falling mixed-phase virga from a thin supercooled liquid layer cloud base were observed on 20 occasions at altitudes of 2.3–9.4 km with ground-based lidars at Wuhan (30.5 °N, 114.4 °E), China. Polarization lidar profile (3.75-m) analysis reveals some ubiquitous features of both falling mixed-phase virga and their liquid parent cloud layers. Each liquid parent cloud had a well-defined base height where the backscatter ratio R was ~7.0 and the R profile had a clear inflection point. At an altitude of ~34 m above the base height, the depolarization ratio reached its minimum value (~0.04), indicating a liquid-only level therein. The thin parent cloud layers tended to form on the top of a broad preexisting aerosol/liquid water layer. The falling virga below the base height showed firstly a significant depolarization ratio increase, suggesting that most supercooled liquid drops in the virga were rapidly frozen into ice crystals (via contact freezing). After reaching a local maximum value of the depolarization ratio, both the values of the backscatter ratio and depolarization ratio for the virga exhibited an overall decrease with decreasing height, indicating sublimated ice crystals. The diameters of the ice crystals in the virga were estimated based on an ice particle sublimation model along with the lidar and radiosonde observations. It was found that the ice crystal particles in these virga cases tended to have smaller mean diameters and narrower size distributions with increasing altitude. The mean diameter value is 350 ± 111 µm at altitudes of 4–8.5 km.


2016 ◽  
Author(s):  
Josef Gasteiger ◽  
Silke Groß ◽  
Bernadett Weinzierl ◽  
Daniel Sauer ◽  
Volker Freudenthaler

Abstract. Long-range transport of aerosol in the Saharan Air Layer (SAL) across the Atlantic plays an important role for weather, climate, and ocean fertilization. However, processes occurring within the SAL and their effects on aerosol properties are still unclear. In this work we study particle settling and convective mixing within the SAL based on measured and modeled vertical aerosol profiles in the upper 1 km of the transported SAL. We use ground-based POLIS lidar measurements and airborne particle counter measurements over the Western Atlantic, as well as space-based CALIOP lidar measurements from Africa to the Western Atlantic. In our model we take account of the optical properties and the Stokes gravitational settling of irregularly-shaped Saharan dust particles. We test two hypotheses about the occurrence of convective mixing within the SAL over the Atlantic to explain the aerosol properties observed by the lidars and the particle counter. Our first hypothesis (H1) assumes that no mixing occurs in the SAL leading to an altitude separation of super-micron dust particles as a result of settling. The second hypothesis (H2) assumes that convective mixing occurs in the SAL during the day allowing large super-micron dust particles to stay airborne longer than without convective mixing. In general, a decrease of the particle linear depolarization ratio towards the SAL top is found in the measured lidar data but the decrease is much weaker than modeled in case of H1. The in-situ data on particle number concentrations show a presence of large particles near the SAL top that is inconsistent with H1. Furthermore, the analysis of the CALIOP measurements reveals that the average vertical profile of the linear depolarization ratio of the aerosols in the upper 1 km of the SAL does not change along its transport path over the Atlantic. These findings indicate H2 to be much more likely than H1, giving evidence that convective mixing occurs within the SAL over the Atlantic with significant consequences for the evolution of the size distribution of the super-micron dust particles during transport.


2020 ◽  
Vol 13 (2) ◽  
pp. 893-905 ◽  
Author(s):  
Elina Giannakaki ◽  
Panos Kokkalis ◽  
Eleni Marinou ◽  
Nikolaos S. Bartsotas ◽  
Vassilis Amiridis ◽  
...  

Abstract. A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem.


2020 ◽  
Author(s):  
Qiaoyun Hu ◽  
Haofei Wang ◽  
Philippe Goloub ◽  
Zhengqiang Li ◽  
Igor Veselovskii ◽  
...  

Abstract. The Taklamakan desert is an important dust source for the global atmospheric dust budget and a cause of the dust weather in Eastern Asia. The characterization of the properties and vertical distributions of Taklamakan dust in the source region is still very limited. To fill this gap, the DAO (Dust Aerosol Observation) was conducted in Kashi, China in 2019. Kashi site is about 150 km to the west rim of the Taklamakan desert and is strongly impacted by desert dust aerosols, especially in spring time, i.e. April and May. Apart from dust, fine particles coming from local anthropogenic emissions or/and transported aerosols are also a non-negligible aerosol component. In this study, we provide the first profiling of the 2α + 3β + 3δ lidar profiles of Taklamakan dust based on a multi-wavelength Raman polarization lidar. Four cases, including two Taklamakan dust events (Case 1 and 2) and two polluted dust events (Case 3 and 4) are presented. The lidar ratio in the Taklamakan dust outbreak is found to be 51 ± 8–56 ± 8 sr at 355 nm and 45 ± 7 sr at 532 nm. The particle linear depolarization ratios are about 0.28 ± 0.04–0.32 ± 0.05 at 355 nm, 0.35 ± 0.05 at 532 nm and 0.31 ± 0.05 at 1064 nm. The observed polluted dust is commonly featured with reduced particle linear depolarization ratio and enhanced extinction and backscatter Angstrom exponent. In Case 3, the lidar ratio of polluted dust is about 42 ± 6 sr at 355 nm and 40 ± 6 sr at 532 nm. The particles linear depolarization ratios decrease to about 0.25, with a weak spectral dependence. In Case 4, the variability of lidar ratio and particle linear depolarization ratio is higher than in Case 3, which reflects the complexity of the nature of mixed pollutant and the mixing state. The results provide the first reference for the characteristics of Taklamakan dust measured by Raman lidar. The data could contribute to complementing the dust model and improving the accuracy of climate modeling.


Sign in / Sign up

Export Citation Format

Share Document