The Steam Explosion Induced by the Molten Reactor Material-Water Interaction

2002 ◽  
Author(s):  
J. H. Song ◽  
I. K. Park ◽  
Yongseung Shin ◽  
J. H. Kim ◽  
S.W. Hong ◽  
...  
Author(s):  
S. W. Hong ◽  
J. H. Kim ◽  
B. T. Min ◽  
I. K. Park ◽  
H. D. Kim

The suppression of a vapor explosion is reviewed from a void fraction point of view from previous research results and the results of an experiment and analysis for TROI using a prototypic reactor material. In a tin-water system, a high fraction of air which played the role of a steam reduced the peak pressure of a steam explosion. According to the sensitivity analysis that was carried out with an increase in the vapor volume fraction, an energetic vapor explosion hardly took place in the mixture with a high void fraction. In higher vapor fraction conditions (αv> 0.3), the vapor explosion was very weak. A prototypic corium shows a relatively high void fraction compared to the ZrO2 which is known as an explosive material because the corium system generated many smaller particles compared to the ZrO2 system. The corium system shows a relatively low explosivity compared to the ZrO2 system because the high void fraction of the corium system plays the role of preventing a contact between the water and the hot melt drops in the triggering stage. When considering the experimental results for the role of air instead of steam, an air supply system to provide a high volume fraction during a premixing process can radically prevent and/or mitigate a steam explosion.


Author(s):  
Jinho Song ◽  
Ikkyu Park ◽  
Yongseung Sin ◽  
Jonghwan Kim ◽  
Seongwan Hong ◽  
...  

Korea Atomic Energy Research Institute (KAERI) has been carrying an experimental research program on the steam explosion named “Test for Real cOrium Interaction with water (TROI)” since 1997. The objective of the program is to investigate whether the corium would lead to an energetic steam explosion and to measure the conversion ratio of the energetic steam explosion. In the first series of tests using several kg of ZrO2 where the melt/water interaction were made in the water pool at 30 ∼ 95 °C, either a quenching or a spontaneous steam explosions was observed. In the second series of tests using the mixture of UO2/ZrO2 performed in a similar manner as that of ZrO2, it also resulted in either a quenching or energetic steam explosion. The morphology of debris and pressure profile clearly indicate the differences in those two phenomena. The process parameters including the dynamic pressure, dynamic impulse, water and melt temperature, static pressure inside the containment chamber were measured.


2016 ◽  
Vol 54 (1) ◽  
pp. 47-57 ◽  
Author(s):  
JinHo Song ◽  
YoungSu Na ◽  
SeongWan Hong ◽  
SeongHo Hong

1991 ◽  
Vol 23 (4-6) ◽  
pp. 825-834 ◽  
Author(s):  
T. H. Lessel

The upgrading and nitrification was required for the waste water treatment plant in Geiselbullach. As space for more aeration tanks was not available, the possibility of increasing the MLSS by the use of submerged bio-film reactors was tested in a half technical scale pilot plant with three different reactor materials. Each tested reactor material caused a significant increase of MLSS and the nitrification reaction. The rope-type material was selected for the practical application, as it had not the same disadvantages of the other tested systems, which proved operational problems. After one year of continuous operation for nitrification in the full scale plant the influences on the biomass characteristics were investigated. Design criterias and details and operational data are reported.


Sign in / Sign up

Export Citation Format

Share Document