Effective elastic modulus of peristatic bar with periodically distributed damage

Author(s):  
Valeriy Buryachenko
Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 80
Author(s):  
Bo Zhang ◽  
Sizhi Zeng ◽  
Fenghua Tang ◽  
Shujun Hu ◽  
Qiang Zhou ◽  
...  

As a stimulus-sensitive material, the difference in composition, fabrication process, and influencing factors will have a great effect on the mechanical properties of a superelastic Ni-Ti shape memory alloy (SMA) wire, so the seismic performance of the self-centering steel brace with SMA wires may not be accurately obtained. In this paper, the cyclic tensile tests of a kind of SMA wire with a 1 mm diameter and special element composition were tested under multi-working conditions, which were pretreated by first tensioning to the 0.06 strain amplitude for 40 cycles, so the mechanical properties of the pretreated SMA wires can be simulated in detail. The accuracy of the numerical results with the improved model of Graesser’s theory was verified by a comparison to the experimental results. The experimental results show that the number of cycles has no significant effect on the mechanical properties of SMA wires after a certain number of cyclic tensile training. With the loading rate increasing, the pinch effect of the hysteresis curves will be enlarged, while the effective elastic modulus and slope of the transformation stresses in the process of loading and unloading are also increased, and the maximum energy dissipation capacity of the SMA wires appears at a loading rate of 0.675 mm/s. Moreover, with the initial strain increasing, the slope of the transformation stresses in the process of loading is increased, while the effective elastic modulus and slope of the transformation stresses in the process of unloading are decreased, and the maximum energy dissipation capacity appears at the initial strain of 0.0075. In addition, a good agreement between the test and numerical results is obtained by comparing with the hysteresis curves and energy dissipation values, so the numerical model is useful to predict the stress–strain relations at different stages. The test and numerical results will also provide a basis for the design of corresponding self-centering steel dampers.


2013 ◽  
Vol 54 (64) ◽  
pp. 51-60 ◽  
Author(s):  
Aleksey Marchenko ◽  
Eugene Morozov ◽  
Sergey Muzylev

Abstract A method to estimate the flexural stiffness and effective elastic modulus of floating ice is described and analysed. The method is based on the analysis of water pressure records at two or three locations below the bottom of floating ice when flexural-gravity waves propagate through the ice. The relative errors in the calculations of the ice flexural stiffness and the water depth are analysed. The method is tested using data from field measurements in Tempelfjorden, Svalbard, where flexural-gravity waves were excited by an icefall at the front of the outflow glacier Tunabreen in February 2011.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Sha Xu ◽  
Hao Chen ◽  
Yali Yang ◽  
Kun Gao

Abstract Three-dimensional (3D) reconstruction and finite element method are combined to study the damage behavior of aluminum alloy resistance spot-welded joints. Fatigue damage of spot-welded joints under different cyclic loading stages was obtained by X-ray microcomputed tomography (X-ray micro CT). Then, avizo software was used to reconstruct the scanned data of joints with different damage degrees, and the distribution and variation of defects in the joints are obtained. On this basis, 3D finite element damage models were established. Finite element calculations were carried out to analyze the fatigue damage of spot-welded joints by adopting the effective elastic modulus as the damage parameter. The results show that the effective elastic modulus is consistent with the experimental results. The method of combining 3D reconstruction with the finite element method can be used to evaluate the internal damage of spot-welded joints and provide theoretical basis for the prediction of fatigue life.


Author(s):  
Ilya I. Kudish ◽  
Donald K. Cohen ◽  
Brenda Vyletel

Generally, it is assumed that under any applied force there will always be some gap between the surfaces in a contact of rough elastic surfaces resulting in a discontinuous (i.e. multiply connected) contact. The presence of gaps along the line contact relates to the ability to form an adequate mechanical seal across an interface. This paper will demonstrate that for a twice continuously differentiable rough surface with sufficiently small asperity amplitude and/or sufficiently large applied load and/or sufficiently low material elastic modulus singly connected contacts exist. Solution of a contact problem for a rough elastic half-plane and a perfectly smooth rigid indenter with sharp edges is considered. First, considered a problem with artificially created surface irregularity and it is shown that for such a surface the contact region is always multiply connected. An exact solution of the problem for an indenter with sharp edges resulting in a singly connected contact region is considered and it is conveniently expressed in the form of a series in Chebyshev polynomials. A sufficient (not necessary) condition for a contact of an indenter with sharp edges and a rough elastic surface to be singly connected is derived. The singly connected contact condition depends on the surface micro-topography, material effective elastic modulus, and applied load. It is determined that in most cases a normal contact of a twice continuously differentiable rough surface with sufficiently small asperity amplitude and/or sufficiently large applied load is singly connected.


2001 ◽  
Vol 67 (655) ◽  
pp. 527-532
Author(s):  
Nao-Aki NODA ◽  
Hironobu NISITANI ◽  
Yasushi TAKASE ◽  
Ken-Ichiro TAKEUCHI

2013 ◽  
Vol 331 ◽  
pp. 456-460
Author(s):  
Min He ◽  
Duan Hu Shi ◽  
Feng Yang ◽  
Ning Zhang ◽  
Hua Feng Guo

An indentation approach with Berkovich indenter is proposed to determine fracture toughness for ductile materials. With decrease of effective elastic modulus, an approximate linear relationship between logarithmic plastic penetration depth and logarithmic effective elastic modulus, and a quadratic polynomial relationship between the plastic penetration depths and penetration loads are exhibited by indentation investigation with Berkovich indenter. The damage constructive equation of effective elastic modulus is proposed to determine the critical effective elastic modulus at the fracture point, which is the key problem to calculate the indentation energy to fracture. The critical plastic penetration depth is identified after the critical effective elastic modulus can be predicted by conventional mechanical properties. The fracture toughness is calculated according to the equation of penetration load, plastic penetration depth and the critical plastic penetration depth.


2017 ◽  
Vol 864 ◽  
pp. 336-340 ◽  
Author(s):  
E.V.M. Carrasco ◽  
J.N.R. Mantilla ◽  
M.A. Smits ◽  
V.D. Pizzol ◽  
P.V. Krüger ◽  
...  

The objective of this work is to determinate the influence of the scarf-jointed in the strength and the modulus of elasticity of the glued laminated timber beam. To determine this influence, several tests with the outer laminae with scarf-joint and the bevel with different inclinations has been made. The models were made of Parana Pine, Araucaria angustifolia. For the tests were performed three points bending. With the load values and the deflection at mid-span and by linear regression were determined the effective elastic modulus. The results indicate that the performance is reduced considerably in the presence of a scarf-joint in the external laminae and also the reduction is greater when the scarf angle increases.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Nikhil D. Londhe ◽  
Nagaraj K. Arakere ◽  
Ghatu Subhash

The analytical expressions currently available for Hertzian contact stresses are applicable only for homogeneous materials and not for case-hardened bearing steels, which have inhomogeneous microstructure and graded elastic properties in the subsurface region. Therefore, this article attempts to determine subsurface stress fields in ball bearings for graded materials with different ball and raceway geometries in contact. Finite element models were developed to simulate ball-on-raceway elliptical contact and ball-on-plate axisymmetric contact, to study the effects of elastic modulus variation with depth due to case hardening. Ball bearings with low, moderate, and heavy load conditions are considered. The peak contact pressure for case-hardened steel is always more than that of through-hardened steel under identical geometry and loading conditions. Using equivalent contact pressure approach, effective elastic modulus is determined for case-carburized steels, which will enable the use of Hertz equations for different gradations in elastic modulus of raceway material. Nonlinear regression tools are used to predict effective elastic modulus as a weighted sum of surface and core elastic moduli of raceway material and design parameters of ball–raceway contact area. Mesh convergence study and validation of equivalent contact pressure approach are also provided. Implications of subsurface stress variation due to case hardening on bearing fatigue life are discussed.


Sign in / Sign up

Export Citation Format

Share Document