High Performance Augmentations for Refrigeration System Evaporators and Condensers

1994 ◽  
Vol 1 (3) ◽  
pp. 275-285 ◽  
Author(s):  
John R. Thome
2001 ◽  
Author(s):  
Ali Heydari ◽  
Kathy Russell

Abstract A small refrigeration system for cooling of computer system components is evaluated. A thermodynamic model describing the performance of the cycle along with a computer simulation program is developed to evaluate its performance. The refrigeration system makes use of a miniature reciprocating vapor compression compressor. Due to space limitations in some high performance computer servers, a miniature refrigeration system composed of a compressor, capillary tube, a compact condenser, and a cold-plate evaporator heat exchanger are used. Mathematical multi-zone formulation for modeling thermal-hydraulic performance of heat exchanger for the condenser and evaporator are presented. The throttling device is a capillary tube and there is presented a mathematical formulation for predicting refrigerant mass flow rate through the throttling device. A physically based efficiency formulation for simulating the performance of the miniature compressor is used. An efficient iterative numerical scheme with allowance for utilization of various refrigerants is developed to solve the governing system of equations. Using the simulation program, the effects of parameters such as the choice of working refrigerant, evaporating and condensing temperatures on system components and overall efficiency of system are studied. In addition, a RAS (reliability, availability and serviceability) discussion of the proposed CPU-cooling refrigeration solution is presented. The results of analysis show that the new technology not only overcomes many shortcomings of the traditional fan-cooled systems, but also has the capacity of increasing the cooling system’s coefficient of performance.


2012 ◽  
Vol 05 ◽  
pp. 205-226
Author(s):  
Kenji Hosoyama

Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes — the liquefier and refrigerator modes — will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80 K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.


2021 ◽  
Vol 26 (3) ◽  
pp. 119-130
Author(s):  
R.A. Mahmood ◽  
O.M. Ali ◽  
A. Al-Janabi ◽  
G. Al-Doori ◽  
M.M. Noor

Abstract Reducing energy consumption and providing high performance for a vapour compression refrigeration system are big challenges that need more attention and investigation. This paper provides an extensive review of experimental and theoretical studies to present the vapour compression refrigeration system and its modifications that can be used to improve system’s performance and reduce its energy consumption. This paper also presents the challenges that can be considered as a gab of research for the future works and investigations. Cooling capacity, refrigerant effect, energy consumption can be improved by using vapour injection technique, natural working fluid, and heat exchanger. Based on the outcome of this paper, vapour injection technique using natural refrigerant such as water can provide ultimate friendly refrigeration system. Future vision for the vapour compression refrigeration system and its new design technique using Computational Fluid Dynamic (CFD) is also considered and presented.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
M. J. Morales ◽  
S. A. Sherif

The purpose of this study is to investigate how the heat exchanger inventory allocation plays a role in maximizing the thermal performance of a two-stage refrigeration system with two evaporators. First, the system is modeled as a Carnot refrigerator and a particular heat transfer parameter is kept constant as the heat exchanger allocation parameter is allowed to vary. The value of the heat exchanger allocation parameter corresponding to the maximum coefficient of performance (COP) is noted. The results are compared to those of a non-Carnot refrigerator with isentropic and nonisentropic compression. It is found that the Carnot refrigerator can be used to predict the value of the heat exchanger allocation parameter where the maximum COP occurs for a non-Carnot refrigerator. In order to improve the accuracy of that prediction, the predicted value of the heat exchanger allocation parameter has to be inputted into the set of equations used for the non-Carnot refrigerator. This study is useful in designing a low-cost, high-performance refrigeration system.


Volume 4 ◽  
2004 ◽  
Author(s):  
M. J. Morales ◽  
S. A. Sherif

The purpose of this study is to investigate how the heat exchanger inventory allocation plays a role in maximizing the thermal performance of a two-stage refrigeration system with two evaporators. First, the system is modeled as a Carnot refrigerator and a particular heat transfer parameter is kept constant as the heat exchanger allocation parameter is allowed to vary. The value of the heat exchanger allocation parameter corresponding to the maximum coefficient of performance (COP) is noted. The results are compared to those of a non-Carnot refrigerator with isentropic and non-isentropic compression. It is found that the Carnot refrigerator can be used to predict the value of the heat exchanger allocation parameter where the maximum COP occurs for a non-Carnot refrigerator. In order to improve the accuracy of that prediction, the predicted value of the heat exchanger allocation parameter has to be inputted into the set of equations used for the non-Carnot refrigerator. This study is useful in designing a low cost, high-performance refrigeration system.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mukhtar BenAbeid

This paper, illustrates a design and simulation of a solar powered absorption refrigeration system preserves food above freezing point. The main system is modified from a commercial conventional system located at Tajoura, Libya. The target is to design and operate the system at high solar fraction and efficiency. The simulation is performed by TRNSYS to evaluate the annual thermal performance of the solar system that consists of 50-kW absorption chiller producing cold for three refrigerated rooms. The model could be classified into two main parts; refrigeration load model and solar powered refrigeration system model. The results demonstrated that the optimum system achieves 51% solar fraction consists of 48 m2 of high performance evacuated tubes solar collectors and 5000-litre thermal storage tank, in order to power a 50-kW absorption chiller that offers cold for three refrigerated rooms of vegetables.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Sign in / Sign up

Export Citation Format

Share Document