PIV IN A RUNNING AUTOMOTIVE ENGINE: SIMULTANEOUS VELOCIMETRY FOR INTAKE MANIFOLD RUNNERS

Author(s):  
Dimitri Bonnet ◽  
Magali Barthès ◽  
Yannick Bailly ◽  
Laurent GIrardot ◽  
David Guyon ◽  
...  
Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Jerald G. Wagner ◽  
John M. Gattoni ◽  
Kyle I. Merical ◽  
...  

A design process was defined and implemented for the rapid development of purpose-built, heavy-fueled engines using modern CAE tools. The first exercise of the process was the clean sheet design of the 1.25 L, three-cylinder, turbocharged AMD45 diesel engine. The goal of the AMD45 development program was to create an engine with the power density of an automotive engine and the durability of an industrial/military diesel engine. The AMD45 engine was designed to withstand 8000 hours of operation at 4500 RPM and 45 kW output, while weighing less than 100 kg. Using a small design team, the total development time to a working prototype was less than 15 months. Following the design phase, the AMD45 was fabricated and assembled for first prototype testing. The minimum-material-added design approach resulted in a lightweight engine with a dry weight 89 kg for the basic engine with fuel system. At 4500 RPM and an intake manifold pressure of 2.2 bar abs., the AMD45 produced 62 kW with a peak brake fuel-conversion efficiency greater than 34%. Predictions of brake power and efficiency from the design phase matched to within 5% of experimental values. When the engine is detuned to 56 kW maximum power, the use of multi-pulse injection and boost pressure control allowed the AMD45 to achieve steady state emissions (as measured over the ISO 8178 C1 test cycle) of CO and NOx+NMHC that met the EPA Tier 4 Non-road standard without exhaust after-treatment, with the exception of idle testing. PM emissions were also measured, and a sulfur-tolerant diesel particulate filter has been designed for PM after-treatment.


1992 ◽  
Vol 114 (2) ◽  
pp. 278-285 ◽  
Author(s):  
J. J. Moskwa ◽  
J. K. Hedrick

There is considerable interest in coordinated automotive engine/transmission control to smooth shifts, and for traction control of front wheel vehicles. This paper outlines a nonlinear dynamic engine model of a port fuel-injected engine, which can be used for control algorithm development. This engine model predicts the mean engine brake torque as a function of the engine controls (i.e., throttle angle, spark advance, fuel flow rate, and exhaust gas recirculation (E. G. R.) flow rate). The model has been experimentally validated for a specific engine, and includes: • intake manifold dynamics, • fuel delivery dynamics, and • process delays inherent in the four-stroke engine. This model is used in real time within a control algorithm, and for system simulation. Also, it is flexible enough to represent a family of spark ignition automotive engines, given some test and/or simulation data for setting parameters.


Author(s):  
Munikiran Ramisetti ◽  
Srinivasan K.

Reduced engine noise has contributed greatly to the comfort of today’s passenger vehicles. The trend towards lighter vehicles has led to massive increase in the use of plastic parts, especially for engine components such as intake manifolds and intake air pipes. The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. The engine power can be increased with the help of improved interior surface roughness and lowered air temperature. The increased usage of plastics for air intake manifold (AIM) production, in place of metallic materials, made the NVH optimization more complicated. In recent years, automotive engine manufacturers are increasingly focusing their attention on noise generated by plastic air intake manifolds (AIMs). The main objective is to predict the B12D engine intake manifold noise due to the combined effects of combustion loads and fluid flow pressure at various engine speeds (2000rpm-6400rpm). The meshing of intake manifold was done in finite analysis software HYPERMESH. The post processing was done in NASTRAN software to get the noise levels in AIM. The analytical results were validated by using experimental results.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Alessandro N. Vargas ◽  
Leonardo Acho ◽  
Edison Bonifacio ◽  
Walter Arens ◽  
João B.R. do Val

Author(s):  
Andrea Emilio Catania ◽  
Roberto Finesso ◽  
Ezio Spessa

A predictive zero-dimensional low-throughput combustion model that was previously developed by the authors has been refined and applied to a EURO V diesel automotive engine. The model is capable of simulating, in real time, the time-histories of the HRR (Heat Release Rate), in-cylinder pressure, in-cylinder temperatures and NOx (nitrogen oxides) concentrations, on the basis of a few quantities estimated by the ECU (Engine Control Unit), such as the injection parameters, the trapped air mass, the intake manifold pressure and temperature. It has been developed for model-based feedforward control purposes in DI (Direct Injection) diesel engines featuring an advanced combustion system or new combustion-mode concepts, such as LTC/PCCI (Low Temperature Combustion/Premixed Charge Compression Ignition) engines. In the present work, the model has been assessed in detail by analyzing a wide set of experimental engine data that were acquired during the engine calibration phase. The experimental data set has been defined according to the DoE (Design of Experiment) methodology currently used for engine calibration purposes, and applied to six ‘key-points’ that are representative of engine working operations during an NEDC (New European Driving Cycle) for a D-class passenger car. Different injection strategies (pilot-main, double pilot-main; pilot-main-after; double pilot-main-after) have been considered for each key point, and all the main engine operating parameters (rail pressure, injected quantities, boost level, intake temperature, EGR rate,…) have been included in the DoE variation list. Therefore, about 1000 steady-state engine operating conditions have been investigated. In addition, several NEDC driving cycles have been realized with the engine installed on a dynamic test rig, and the combustion parameters and emission levels have continuously been measured during the transient operations. The model has been applied to all the investigated conditions. It has shown excellent accuracy in estimating the values of the main combustion parameters, and a good matching between the calculated and predicted NOx concentrations was found, for both steady-state and transient operations.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1095-1098 ◽  
Author(s):  
Jeonghan Lee ◽  
Kyungseok Cho ◽  
Soogab Lee

Author(s):  
ALVARO ROCHA ◽  
Luan Correia ◽  
Raimundo Duarte ◽  
Emerson da Trindade Marcelino

Author(s):  
Ethiraj Leelakrishnan ◽  
B.K. Gnanavel ◽  
M. Sunil Kumar ◽  
M. Mohamed Faisalkhan ◽  
Peter Devadoss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document