scholarly journals The NR3B Subgroup: An Overrview

2007 ◽  
Vol 5 (1) ◽  
pp. nrs.05009 ◽  
Author(s):  
Annie M. Tremblay ◽  
Vincent Giguère

Members of the NR3B group of the nuclear receptor superfamily, known as the estrogen-related receptors (ERRs), were the first orphan receptors to be identified two decades ago. Despite the fact that a natural ligand has yet to be associated with the ERRs, considerable knowledge about their mode of action and biological functions has emerged through extensive biochemical, genetic and functional genomics studies. This review describes our current understanding of how the ERRs work as transcription factors and as such, how they control diverse developmental and physiological programs.

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1852 ◽  
Author(s):  
Baylee A. Porter ◽  
Maria A. Ortiz ◽  
Gennady Bratslavsky ◽  
Leszek Kotula

The nuclear receptor superfamily comprises a large group of proteins with functions essential for cell signaling, survival, and proliferation. There are multiple distinctions between nuclear superfamily classes defined by hallmark differences in function, ligand binding, tissue specificity, and DNA binding. In this review, we utilize the initial classification system, which defines subfamilies based on structure and functional difference. The defining feature of the nuclear receptor superfamily is that these proteins function as transcription factors. The loss of transcriptional regulation or gain of functioning of these receptors is a hallmark in numerous diseases. For example, in prostate cancer, the androgen receptor is a primary target for current prostate cancer therapies. Targeted cancer therapies for nuclear hormone receptors have been more feasible to develop than others due to the ligand availability and cell permeability of hormones. To better target these receptors, it is critical to understand their structural and functional regulation. Given that late-stage cancers often develop hormone insensitivity, we will explore the strengths and pitfalls of targeting other transcription factors outside of the nuclear receptor superfamily such as the signal transducer and activator of transcription (STAT).


2004 ◽  
Vol 33 (2) ◽  
pp. 493-509 ◽  
Author(s):  
B Horard ◽  
A Castet ◽  
P-L Bardet ◽  
V Laudet ◽  
V Cavailles ◽  
...  

The estrogen-receptor-related (ERR) receptors are orphan members of the nuclear receptor superfamily that bind to their specific DNA target sites as homodimers. However, it has not been shown whether this mode of binding is required for the transcriptional activation they drive. We here show that heterodimerization can also occur between these receptors. Furthermore, we demonstrate that the unique amphioxus ortholog of ERR genes (AmphiERR) is expressed as two isoforms differing by an in-frame insertion. While the short isoform behaves like its mammalian counterparts, the long isoform (AmphiERR(L)) displays divergent transcriptional properties according to the target site to which it binds. Indeed, AmphiERR(L) binds as a monomer but does not activate transcription through the SF1 response element (SFRE). On the contrary, this isoform binds as a homodimer and activates transcription through the classical estrogen-response element. Our results strongly suggest that dimerization is required for transactivation exerted by the ERR receptors.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2395
Author(s):  
Martine Daujat-Chavanieu ◽  
Sabine Gerbal-Chaloin

Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.


Author(s):  
Baylee Porter ◽  
Maria A. Ortiz ◽  
Gennady Bratslavsky ◽  
Leszek Kotula

The nuclear receptor superfamily comprises a large group of proteins with functions essential for cell signaling, survival and proliferation. There are multiple distinctions between nuclear superfamily classes defined by hallmark differences in function, ligand binding, tissue specificity, and DNA binding. In this review, we utilize the initial classification system, which defines subfamilies based on structure and functional difference. The defining feature of the nuclear receptor superfamily is that these proteins function as transcription factors. The loss of transcriptional regulation or gain of functioning of these receptors is a hallmark in numerous diseases. For example, in prostate cancer the androgen receptor is a primary target for current prostate cancer therapies. Targeted cancer therapies for nuclear hormone receptors have been more feasible than others to develop due to ligand availability and cell permeability of hormones. To better target these receptors, it is critical to understand their structural and functional regulation. Given that late-stage cancers often develop hormone insensitivity, we will explore the strengths and pitfalls of targeting other transcription factors outside of the nuclear receptor superfamily such as the signal transducer and activator of transcription (STAT).


2004 ◽  
Vol 40 ◽  
pp. 11-26 ◽  
Author(s):  
Héctor Escriva ◽  
Stéphanie Bertrand ◽  
Vincent Laudet

Nuclear receptors form a superfamily of ligand-activated transcription factors implicated in various physiological functions from development to homoeostasis. Nuclear receptors share a common evolutionary history revealed by their conserved structure and by their high degree of sequence conservation. Here we review the latest advances on the evolution of nuclear receptors by addressing the following questions. What is known about the appearance and diversification of nuclear hormone receptors? How did their different functional characteristics evolve? What can we infer from the analysis of complete genomes? In summary, the study of the evolution of nuclear receptors will be very important not only for understanding their functions in vivo but also for obtaining insights into the evolution of animal genomes as a whole.


2019 ◽  
Vol 20 (11) ◽  
pp. 2677
Author(s):  
Hiroshi Miyamoto

Sex steroids, including androgens, estrogens, and progestogens, are known to have widespread physiological actions beyond the reproductive system via binding to the sex hormone receptors, members of the nuclear receptor superfamily that function as ligand-inducible transcription factors [...]


2013 ◽  
Vol 35 (10) ◽  
pp. 1179-1188 ◽  
Author(s):  
Hong WANG ◽  
Gang-Bo LI ◽  
Da-Yong ZHANG ◽  
Jing LIN ◽  
Bao-Long SHENG ◽  
...  

2022 ◽  
Author(s):  
Yiyun Geng ◽  
Jingyuan Xu ◽  
Weichao Li ◽  
Qing Li ◽  
Chenjinxin Shen ◽  
...  

We report a quantitative chemoproteomic approach that utilizes a clickable photoreactive probe for global profiling of celastrol targets, which may significantly improve the current understanding of celastrol’s mode of action.


Sign in / Sign up

Export Citation Format

Share Document