scholarly journals Studies on Cell Wall Regeneration and Cell Division in Soybean Protoplasts Using Fluorescence and Scanning Electron Microscopy.

1992 ◽  
Vol 61 (3) ◽  
pp. 487-493 ◽  
Author(s):  
Salak PHANSIRI ◽  
Hiroshi MIYAKE ◽  
Eizo MAEDA ◽  
Takeshi TANIGUCHI
2013 ◽  
Vol 47 ◽  
pp. 13-20
Author(s):  
O. V. Anissimova

Algae samples were collected during different seasons from 1997 to 2011 in two swamps located at Zvenigorod Biological Station in Moscow Region. There were found 25 Cosmarium species and varieties, 9 taxa of them being new to the region. Descriptions of the taxa were specified by observation of cell wall ornamentation with light and scanning electron microscopy. Original descriptions, photos and drawings of algae are presented.


2014 ◽  
Vol 84 (18) ◽  
pp. 1939-1947 ◽  
Author(s):  
Geoffrey RS Naylor ◽  
Margaret Pate ◽  
Graham J Higgerson

Previous researchers established a set of reference cottons with known fiber maturity and linear density (fineness) values based on the analysis of a large number of individual transverse fiber cross-sections viewed under the optical microscope. Part 1 identified that the limited optical resolution of the captured images may be the source of a significant systematic error in the assigned values of cell wall area and hence fiber maturity and linear density values. In this paper the optical microscopy technique was implemented. Individual cross-sections were measured using this approach and also higher resolution and higher magnification images were obtained using scanning electron microscopy. It was found that the data obtained from optical microscopy were similar to the SEM data, with the perimeter being 2% smaller, the cell wall area being 6% larger and the maturity ratio values being 8% higher. It was concluded that the combined approach of utilizing SEM in conjunction with optical imaging is a useful approach for verifying and perhaps correcting the data obtained from optical imaging. Further the SEM images highlighted that the current experimental protocol does not adequately address the challenge of ensuring that the fibers are mounted normal to the plane of cutting the transverse cross-section. Modeling demonstrated that while maturity ratio values are relatively insensitive to this misalignment, measured cell wall area values and hence fiber linear density values will be overestimated. This may be the major source of error associated with the technique and warrants further attention in future studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sergey Mursalimov ◽  
Nobuhiko Ohno ◽  
Mami Matsumoto ◽  
Sergey Bayborodin ◽  
Elena Deineko

Serial block-face scanning electron microscopy (SBF-SEM) was used here to study tobacco male meiosis. Three-dimensional ultrastructural analyses revealed that intercellular nuclear migration (INM) occurs in 90–100% of tobacco meiocytes. At the very beginning of meiosis, every meiocyte connected with neighboring cells by more than 100 channels was capable of INM. At leptotene and zygotene, the nucleus in most tobacco meiocytes approached the cell wall and formed nuclear protuberances (NPs) that crossed the cell wall through the channels and extended into the cytoplasm of a neighboring cell. The separation of NPs from the migrating nuclei and micronuclei formation were not observed. In some cases, the NPs and nuclei of neighboring cells appeared apposed to each other, and the gap between their nuclear membranes became invisible. At pachytene, NPs retracted into their own cells. After that, the INM stopped. We consider INM a normal part of tobacco meiosis, but the reason for such behavior of nuclei is unclear. The results obtained by SBF-SEM suggest that there are still many unexplored features of plant meiosis hidden by limitations of common types of microscopy and that SBF-SEM can turn over a new leaf in plant meiosis research.


1974 ◽  
Vol 14 (2) ◽  
pp. 439-449
Author(s):  
J. BURGESS ◽  
E. N. FLEMING

The process of cell wall regeneration around cultured protoplasts isolated from tobacco mesophyll has been examined by electron microscopy. The initially formed wall contains 2 components which stain with conventional heavy metal stains. The first consists of un-branched fibres, at first oriented at right angles to the plasmalemma surface. As wall growth proceeds the fibres lengthen and assume an orientation parallel to the plasmalemma. It seems probable that this component is cellulose. The second component of the wall is more amorphous and more densely stained. It is most frequently seen in situations where leaching of materials into the medium would be expected to be minimal. The endoplasmic reticulum and the plasmalemma are the only membrane systems which appear to contribute towards wall formation. No pattern of structure has been detected to explain the orientation or method of synthesis of the microfibrillar part of the wall.


2017 ◽  
Vol 23 (5) ◽  
pp. 1048-1054 ◽  
Author(s):  
Yunzhen Zheng ◽  
Daniel J. Cosgrove ◽  
Gang Ning

AbstractWe have used field emission scanning electron microscopy (FESEM) to study the high-resolution organization of cellulose microfibrils in onion epidermal cell walls. We frequently found that conventional “rule of thumb” conditions for imaging of biological samples did not yield high-resolution images of cellulose organization and often resulted in artifacts or distortions of cell wall structure. Here we detail our method of one-step fixation and dehydration with 100% ethanol, followed by critical point drying, ultrathin iridium (Ir) sputter coating (3 s), and FESEM imaging at a moderate accelerating voltage (10 kV) with an In-lens detector. We compare results obtained with our improved protocol with images obtained with samples processed by conventional aldehyde fixation, graded dehydration, sputter coating with Au, Au/Pd, or carbon, and low-voltage FESEM imaging. The results demonstrated that our protocol is simpler, causes little artifact, and is more suitable for high-resolution imaging of cell wall cellulose microfibrils whereas such imaging is very challenging by conventional methods.


Sign in / Sign up

Export Citation Format

Share Document