Physiological Response to Salinity in Rice Plant. III. A possible mechanism for Na+ exclusion in rice root under NaCl-stress conditions.

1994 ◽  
Vol 63 (2) ◽  
pp. 326-332 ◽  
Author(s):  
Mikio TSUCHIYA ◽  
Miyuki MIYAKE ◽  
Hitoshi NAITO
1995 ◽  
Vol 64 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Mikio TSUGHIYA ◽  
Miyuki MIYAKE ◽  
Philbert BONILLA ◽  
Seiichi KUMANO

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manish Pandey ◽  
Radha Krishna Paladi ◽  
Ashish Kumar Srivastava ◽  
Penna Suprasanna

AbstractPlant bioregulators (PBRs) represent low-cost chemicals for boosting plant defense, especially under stress conditions. In the present study, redox based PBRs such as thiourea (TU; a non-physiological thiol-based ROS scavenger) and hydrogen peroxide (H2O2; a prevalent biological ROS) were assessed for their ability to mitigate NaCl stress in rice variety IR 64. Despite their contrasting redox chemistry, TU or H2O2 supplementation under NaCl [NaCl + TU (NT) or NaCl + H2O2 (NH)] generated a reducing redox environment in planta, which improved the plant growth compared with those of NaCl alone treatment. This was concomitant with better K+ retention and upregulated expression of NaCl defense related genes including HAK21, LEA1, TSPO and EN20 in both NT and NH treated seedlings. Under field conditions, foliar applications of TU and H2O2, at vegetative growth, pre-flowering and grain filling stages, increased growth and yield attributes under both control and NaCl stress conditions. Principal component analysis revealed glutathione reductase dependent reduced ROS accumulation in source (flag leaves) and sucrose synthase mediated sucrose catabolism in sink (developing inflorescence), as the key variables associated with NT and NH mediated effects, respectively. In addition, photosystem-II efficiency, K+ retention and source-sink relationship were also improved in TU and H2O2 treated plants. Taken together, our study highlights that reducing redox environment acts as a central regulator of plant’s tolerance responses to salt stress. In addition, TU and H2O2 are proposed as potential redox-based PBRs for boosting rice productivity under the realistic field conditions.


Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 37
Author(s):  
Aditya Lahiri ◽  
Khushboo Rastogi ◽  
Aniruddha Datta ◽  
Endang M. Septiningsih

Lysine is the first limiting essential amino acid in rice because it is present in the lowest quantity compared to all the other amino acids. Amino acids are the building block of proteins and play an essential role in maintaining the human body’s healthy functioning. Rice is a staple food for more than half of the global population; thus, increasing the lysine content in rice will help improve global health. In this paper, we studied the lysine biosynthesis pathway in rice (Oryza sativa) to identify the regulators of the lysine reporter gene LYSA (LOC_Os02g24354). Genetically intervening at the regulators has the potential to increase the overall lysine content in rice. We modeled the lysine biosynthesis pathway in rice seedlings under normal and saline (NaCl) stress conditions using Bayesian networks. We estimated the model parameters using experimental data and identified the gene DAPF(LOC_Os12g37960) as a positive regulator of the lysine reporter gene LYSA under both normal and saline stress conditions. Based on this analysis, we conclude that the gene DAPF is a potent candidate for genetic intervention. Upregulating DAPF using methods such as CRISPR-Cas9 gene editing strategy has the potential to upregulate the lysine reporter gene LYSA and increase the overall lysine content in rice.


2003 ◽  
Vol 6 (24) ◽  
pp. 2073-2080 ◽  
Author(s):  
Magda M. Aly ◽  
Sabha M. El-Sabb ◽  
Wagih A. El-Shou ◽  
Mohsen K.H. Ebrah

2015 ◽  
Vol 42 (9) ◽  
pp. 865 ◽  
Author(s):  
Nara L. M. Alencar ◽  
Cibelle G. Gadelha ◽  
Maria I. Gallão ◽  
Mary A. H. Dolder ◽  
José T. Prisco ◽  
...  

Jatropha curcas L. is a multipurpose species of the Euphorbiaceae family that is widespread in arid and semiarid regions. This study investigated the ultrastructural and biochemical changes induced by salt stress during J. curcas seed germination and seedling development. Salt stress negatively affected seed germination and increased Na+ and Cl– contents in endosperms and embryo-axis. Lipids represented the most abundant reserves (64% of the quiescent seed dry mass), and their levels were strongly decreased at 8 days after imbibition (DAI) under salinity stress. Proteins were the second most important reserve (21.3%), and their levels were also reduced under salt stress conditions. Starch showed a transient increase at 5 DAI under control conditions, which was correlated with intense lipid mobilisation during this period. Non-reducing sugars and free amino acids were increased in control seeds compared with quiescent seeds, whereas under the salt-stress conditions, minimal changes were observed. In addition, cytochemical and ultrastructural analyses confirmed greater alterations in the cellular reserves of seeds that had been germinated under NaCl stress conditions. Salt stress promoted delays in protein and lipid mobilisation and induced ultrastructural changes in salt-stressed endosperm cells, consistent with delayed protein and oil body degradation.


2021 ◽  
Vol 5 ◽  
Author(s):  
Sowmyalakshmi Subramanian ◽  
Alfred Souleimanov ◽  
Donald L. Smith

Bacillus thuringiensis strain NEB17, produces a bacteriocin, thuricin17 (Th17) and is known to promote the growth more effectively under salt stress conditions. In this study, bacterial salt stress tolerance screening and the possible changes in its secretome under two levels of NaCl stress was evaluated. The salt tolerance screening suggested that the bacterium is able to grow and survive in up to 900 mM NaCl. Thuricin17 production at salt levels from 100 to 500 mM NaCl was quantified using High Performance Liquid Chromatography (HPLC). Salt stress adversely affected the production of Th17 at levels as low as 100 mM NaCl; and the production stopped at 500 mM NaCl, despite the bacterium thriving at these salt levels. Hence, a comparative proteomic study was conducted on the supernatant of the bacterium after 42 h of growth, when Th17 production peaked in the control culture, as determined by Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS). Optimal (salt free) bacterial culture served as a control and 200 and 500 mM NaCl as stress conditions. As salt levels increased, the major enzyme classes, transferases, hydrolases, lyases, and ligases showed increased abundance as compared to the control, mostly related to molecular function mechanisms. Some of the notable up-regulated proteins in 500 mM NaCl stress conditions included an S-layer protein, chitin binding domain 3 protein, enterotoxins, phosphopentomutase, glucose 6-phosphate isomerase and bacterial translation initiation factor; while notable down-regulated proteins included hemolytic enterotoxin, phospholipase, sphingomyelinase C, cold shock DNA-binding protein family and alcohol dehydrogenase. These results indicate that, as the salt stress levels increase, the bacterium probably shuts down the production of Th17 and regulates its molecular functional mechanisms to overcome stress. This study indicates that end users have the option of using Th17 as a biostimulant or the live bacterial inoculum depending on the soil salt characteristics, for crop production. The mass spectrometry proteomics data have been deposited to Mass Spectrometry Interactive Virtual Environment (MassIVE) with the dataset identifier PXD024069, and doi: 10.25345/C5RB8T.


Sign in / Sign up

Export Citation Format

Share Document