An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance

2020 ◽  
Vol 21 (5) ◽  
pp. 723-739 ◽  
Author(s):  
Tian-miao Wang ◽  
Xuan Pei ◽  
Tao-gang Hou ◽  
Yu-bo Fan ◽  
Xuan Yang ◽  
...  
Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Taehoon Lee ◽  
Inwoo Kim ◽  
Yoon Su Baek

Lower limb exoskeleton robots help with walking movements through mechanical force, by identifying the wearer’s walking intention. When the exoskeleton robot is lightweight and comfortable to wear, the stability of walking increases, and energy can be used efficiently. However, because it is difficult to implement the complex anatomical movements of the human body, most are designed simply. Due to this, misalignment between the human and robot movement causes the wearer to feel uncomfortable, and the stability of walking is reduced. In this paper, we developed a two degrees of freedom (2DoF) ankle exoskeleton robot with a subtalar joint and a talocrural joint, applying a four-bar linkage to realize the anatomical movement of a simple 1DoF structure mainly used for ankles. However, bidirectional tendon-driven actuators (BTDAs) do not consider the difference in a length change of both cables due to dorsiflexion (DF) and plantar flexion (PF) during walking, causing misalignment. To solve this problem, a BTDA was developed by considering the length change of both cables. Cable-driven actuators and exoskeleton robot systems create uncertainty. Accordingly, adaptive control was performed with a proportional-integral-differential neural network (PIDNN) controller to minimize system uncertainty.


Author(s):  
Gwendolyn M. Bryan ◽  
Patrick W. Franks ◽  
Seungmoon Song ◽  
Ricardo Reyes ◽  
Meghan P. O’Donovan ◽  
...  

Abstract Background Load carriage is common in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 22% relative to walking in the device with no assistance when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. Methods We used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed Friedman’s tests to analyze trends across worn loads and paired t-tests to determine whether changes from the unassisted conditions to the assisted conditions were significant. Results Exoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 48% with no load (p = 0.05), 41% with the light load (p = 0.01), and 43% with the heavy load (p = 0.04). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. Conclusions Whole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters across participants and conditions suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person’s torso results in larger benefits.


2020 ◽  
Author(s):  
Gina A. Monzon ◽  
Lara Scharrel ◽  
Ashwin DSouza ◽  
Ludger Santen ◽  
Stefan Diez

ABSTRACTThe maintenance of intracellular processes like organelle transport and cell division depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameter using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors have only little effect.


2019 ◽  
Vol 8 (4) ◽  
pp. 3660-3664

In recent times the stock market is accepted as a tool to measure the economic condition of a nation. It is found that the Indian financial market as highly volatile due to the lower value of rupees in foreign exchange with the dollar. This motivated the researchers to measure the interdependencies of [Nifty 50 future (India), Nikkei 225(Japan), NASDAQ 100 Futures (USA), Dow Jones 30 (USA), SSEC (China), Hang Seng Future (Hong Kong), and FTSE 100 (London)]. The analysis covers monthly stock prices for a period of 10years from April 2008 to March 2018. The measurement of interdependencies is studied through granger causality and correlation after the confirmation of the non-normality of data and stationary of data. The result shows a high degree of correlation between NASDAQ and Dow Jones shows 98.76% followed by 96.89% between Nifty 50 future and NASDAQ. The co-movement result of Nifty 50 future through granger causality states Nifty 50 future can explain the future stock market of Nikkei (Japan) and SSEC (China) and the Hang Seng future (Hong Kong) has a bidirectional movement with Nifty 50 futures. The study is useful for the investors to identify the interdependencies of the indices and understand the movement in a significant manner.


Sign in / Sign up

Export Citation Format

Share Document