Survey of Influenza A Viruses Circulating in Wild Birds in Canada 2005 to 2007

2010 ◽  
Vol 54 (s1) ◽  
pp. 440-445 ◽  
Author(s):  
J. Pasick ◽  
Y. Berhane ◽  
H. Kehler ◽  
T. Hisanaga ◽  
K. Handel ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Zhimin Wan ◽  
Qiuqi Kan ◽  
Zhehong Zhao ◽  
Hongxia Shao ◽  
Thomas J. Deliberto ◽  
...  

Subtype H6 avian influenza A viruses (IAVs) are enzootic and genetically diverse in both domestic poultry and wild waterfowl and may cause spillovers in both pigs and humans. Thus, it is important to understand the genetic diversity of H6 IAVs in birds and their zoonotic potential. Compared with that in domestic poultry, the genetic diversity of H6 viruses in wild birds in China has not been well-understood. In this study, five H6 viruses were isolated from wild birds in Poyang Lake, China, and genetic analyses showed that these isolates are clustered into four genotypes associated with reassortments among avian IAVs from domestic poultry and wild birds in China and those from Eurasia and North America and that these viruses exhibited distinct phenotypes in growth kinetics analyses with avian and mammalian cells lines and in mouse challenge experiments. Of interest is that two H6 isolates from the Eurasian teal replicated effectively in the mouse lung without prior adaptation, whereas the other three did not. Our study suggested that there are variations in the mammalian viral replication efficiency phenotypic among genetically diverse H6 IAVs in wild birds and that both intra- and inter-continental movements of IAVs through wild bird migration may facilitate the emergence of novel H6 IAV reassortants with the potential for replicating in mammals, including humans. Continued surveillance to monitor the diversity of H6 IAVs in wild birds is necessary to increase our understanding of the natural history of IAVs.


2021 ◽  
Author(s):  
Bethany J. Hoye ◽  
Celeste M. Donato ◽  
Simeon Lisovski ◽  
Yi-Mo Deng ◽  
Simone Warner ◽  
...  

Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (Order Charadriiformes, Family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese and swans (Order Anseriformes, Family Anatidae) rarely undertake intercontinental migrations. Across a five-year surveillance period (2011–2015), Ruddy turnstones (Arenaria interpres) that ‘overwinter’ during the Austral summer in south eastern Australia showed generally low levels of AIV prevalence (0–2%). However, in March 2014 we detected AIVs in 32% (95% CI; 25–39%) of individuals in a small, low-density, island population 90km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian, recently introduced Eurasian, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900–1500km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania where Anatidae do not display regular inter- or intracontinental migration. IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of Ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting Australian wild birds are unlikely to be ecologically-isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the northern hemisphere.


2021 ◽  
pp. 207-228
Author(s):  
Alan B. Franklin ◽  
Sarah N. Bevins ◽  
Susan A. Shriner

Birds are known to carry pathogens affecting human and agricultural health. Conversely, agricultural operations can serve as sources of pathogens that affect wild bird populations. This chapter provides guidelines to identify focal avian species that frequently use agricultural operations. These guidelines are coupled with identifying host types, such as maintenance and bridge hosts, and potential direct and indirect pathways for pathogen contamination from wild birds to agricultural operations, including patterns of spillover and spillback. The chapter also identifies major bacterial and viral pathogens of concern that are prevalent in birds and that affect human and agricultural health. These pathogens are then used to illustrate disease ecology concepts important at the wildlife–agriculture interface. These microorganisms include food-borne bacteria, influenza A viruses, and Newcastle disease virus. The chapter introduces the concept of contamination potential for categorizing avian species in terms of the risk they pose to contamination of agricultural operations with pathogens of concern. Finally, the chapter examines long-distance movements of wild birds in relation to pathogen introduction and illustrates this with global movement of influenza A viruses by wild birds.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1031
Author(s):  
Ling Tang ◽  
Wangjun Tang ◽  
Xiaofang Li ◽  
Chuanxia Hu ◽  
Di Wu ◽  
...  

From 2016 to 2018, surveillance of influenza A viruses in wild birds was conducted in Shanghai, located at the East Asian–Australian flyway, China. A total of 5112 samples from 51 species of wild birds were collected from three different wetlands. The total three-year prevalence of influenza A viruses among them was 8.8%, as assessed using real-time polymerase chain reaction (PCR) methods, and the total prevalence was higher in Anseriformes (26.3%) than in the Charadriiformes (2.3%) and the other orders (2.4%) in the Chongmin wetlands. Anseriformes should be the key monitoring group in future surveillance efforts. The peak prevalence of influenza A viruses in Charadriiformes were in April and September, and in other bird orders, the peaks were in November and December. Twelve subtypes of haemagglutinin (HA; H1–H12) and eight subtypes of neuraminidase (NA; N1, N2, N4–N9) were identified in 21 different combinations. The greatest subtype diversity could be found in common teal, suggesting that this species of the bird might play an important role in the ecology and epidemiology of influenza A viruses in Shanghai. These results will increase our understanding of the ecology and epidemiology of influenza A viruses in wild bird hosts in eastern China, and provide references for subsequent surveillance of influenza A virus in wild birds in this area.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68522 ◽  
Author(s):  
Nancy A. Gerloff ◽  
Joyce Jones ◽  
Natosha Simpson ◽  
Amanda Balish ◽  
Maha Adel ElBadry ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146059 ◽  
Author(s):  
Martha I. Nelson ◽  
Simon Pollett ◽  
Bruno Ghersi ◽  
Maria Silva ◽  
Mark P. Simons ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 196 ◽  
Author(s):  
Nehal M. Nabil ◽  
Ahmed M. Erfan ◽  
Maram M. Tawakol ◽  
Naglaa M. Haggag ◽  
Mahmoud M. Naguib ◽  
...  

Wild migratory birds are often implicated in the introduction, maintenance, and global dissemination of different pathogens, such as influenza A viruses (IAV) and antimicrobial-resistant (AMR) bacteria. Trapping of migratory birds during their resting periods at the northern coast of Egypt is a common and ancient practice performed mainly for selling in live bird markets (LBM). In the present study, samples were collected from 148 wild birds, representing 14 species, which were being offered for sale in LBM. All birds were tested for the presence of AIV and enterobacteriaceae. Ten samples collected from Northern Shoveler birds (Spatula clypeata) were positive for IAV and PCR sub-typing and pan HA/NA sequencing assays detected H5N8, H9N2, and H6N2 viruses in four, four, and one birds, respectively. Sequencing of the full haemagglutinin (HA) gene revealed a high similarity with currently circulating IAV in Egypt. From all the birds, E. coli was recovered from 37.2% and Salmonella from 20.2%, with 66–96% and 23–43% isolates being resistant to at least one of seven selected critically important antimicrobials (CIA), respectively. The presence of enzootic IAV and the wide prevalence of AMR enterobacteriaceae in wild birds highlight the potential role of LBM in the spread of different pathogens from and to wild birds. Continued surveillance of both AIV and antimicrobial-resistant enterobacteriaceae in wild birds’ habitats is urgently needed.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Lei Li ◽  
Andrew S. Bowman ◽  
Thomas J. DeLiberto ◽  
Mary L. Killian ◽  
Scott Krauss ◽  
...  

ABSTRACTWild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCEIntegration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.


2018 ◽  
Vol 7 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Agustina Rimondi ◽  
Ana S. Gonzalez-Reiche ◽  
Valeria S. Olivera ◽  
Julieta Decarre ◽  
Gabriel J. Castresana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document