scholarly journals Wild Birds in Live Birds Markets: Potential Reservoirs of Enzootic Avian Influenza Viruses and Antimicrobial Resistant Enterobacteriaceae in Northern Egypt

Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 196 ◽  
Author(s):  
Nehal M. Nabil ◽  
Ahmed M. Erfan ◽  
Maram M. Tawakol ◽  
Naglaa M. Haggag ◽  
Mahmoud M. Naguib ◽  
...  

Wild migratory birds are often implicated in the introduction, maintenance, and global dissemination of different pathogens, such as influenza A viruses (IAV) and antimicrobial-resistant (AMR) bacteria. Trapping of migratory birds during their resting periods at the northern coast of Egypt is a common and ancient practice performed mainly for selling in live bird markets (LBM). In the present study, samples were collected from 148 wild birds, representing 14 species, which were being offered for sale in LBM. All birds were tested for the presence of AIV and enterobacteriaceae. Ten samples collected from Northern Shoveler birds (Spatula clypeata) were positive for IAV and PCR sub-typing and pan HA/NA sequencing assays detected H5N8, H9N2, and H6N2 viruses in four, four, and one birds, respectively. Sequencing of the full haemagglutinin (HA) gene revealed a high similarity with currently circulating IAV in Egypt. From all the birds, E. coli was recovered from 37.2% and Salmonella from 20.2%, with 66–96% and 23–43% isolates being resistant to at least one of seven selected critically important antimicrobials (CIA), respectively. The presence of enzootic IAV and the wide prevalence of AMR enterobacteriaceae in wild birds highlight the potential role of LBM in the spread of different pathogens from and to wild birds. Continued surveillance of both AIV and antimicrobial-resistant enterobacteriaceae in wild birds’ habitats is urgently needed.

2003 ◽  
Vol 77 (5) ◽  
pp. 3148-3156 ◽  
Author(s):  
Daniel R. Perez ◽  
Wilina Lim ◽  
Jon P. Seiler ◽  
Guan Yi ◽  
Malik Peiris ◽  
...  

ABSTRACT H9 influenza viruses have become endemic in land-based domestic poultry in Asia and have sporadically crossed to pigs and humans. To understand the molecular determinants of their adaptation to land-based birds, we tested the replication and transmission of several 1970s duck H9 viruses in chickens and quail. Quail were more susceptible than chickens to these viruses, and generation of recombinant H9 viruses by reverse genetics showed that changes in the HA gene are sufficient to initiate efficient replication and transmission in quail. Seven amino acid positions on the HA molecule corresponded to adaptation to land-based birds. In quail H9 viruses, the pattern of amino acids at these seven positions is intermediate between those of duck and chicken viruses; this fact may explain the susceptibility of quail to duck H9 viruses. Our findings suggest that quail provide an environment in which the adaptation of influenza viruses from ducks generates novel variants that can cross the species barrier.


2021 ◽  
Author(s):  
Bethany J. Hoye ◽  
Celeste M. Donato ◽  
Simeon Lisovski ◽  
Yi-Mo Deng ◽  
Simone Warner ◽  
...  

Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (Order Charadriiformes, Family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese and swans (Order Anseriformes, Family Anatidae) rarely undertake intercontinental migrations. Across a five-year surveillance period (2011–2015), Ruddy turnstones (Arenaria interpres) that ‘overwinter’ during the Austral summer in south eastern Australia showed generally low levels of AIV prevalence (0–2%). However, in March 2014 we detected AIVs in 32% (95% CI; 25–39%) of individuals in a small, low-density, island population 90km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian, recently introduced Eurasian, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900–1500km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania where Anatidae do not display regular inter- or intracontinental migration. IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of Ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting Australian wild birds are unlikely to be ecologically-isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the northern hemisphere.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Lei Li ◽  
Andrew S. Bowman ◽  
Thomas J. DeLiberto ◽  
Mary L. Killian ◽  
Scott Krauss ◽  
...  

ABSTRACTWild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCEIntegration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.


2000 ◽  
Vol 74 (24) ◽  
pp. 11825-11831 ◽  
Author(s):  
Yasuo Suzuki ◽  
Toshihiro Ito ◽  
Takashi Suzuki ◽  
Robert E. Holland ◽  
Thomas M. Chambers ◽  
...  

ABSTRACT The distribution of sialic acid (SA) species varies among animal species, but the biological role of this variation is largely unknown. Influenza viruses differ in their ability to recognize SA-galactose (Gal) linkages, depending on the animal hosts from which they are isolated. For example, human viruses preferentially recognize SA linked to Gal by the α2,6(SAα2,6Gal) linkage, while equine viruses favor SAα2,3Gal. However, whether a difference in relative abundance of specific SA species (N-acetylneuraminic acid [NeuAc] andN-glycolylneuraminic acid [NeuGc]) among different animals affects the replicative potential of influenza viruses is uncertain. We therefore examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity. A virus with an HA recognizing NeuAcα2,6Gal but not NeuAcα2,3Gal or NeuGcα2,3Gal failed to replicate in horses, while one with an HA recognizing the NeuGcα2,3Gal moiety replicated in horses. Furthermore, biochemical and immunohistochemical analyses and a lectin-binding assay demonstrated the abundance of the NeuGcα2,3Gal moiety in epithelial cells of horse trachea, indicating that recognition of this moiety is critical for viral replication in horses. Thus, these results provide evidence of a biological effect of different SA species in different animals.


2012 ◽  
Vol 86 (16) ◽  
pp. 8452-8460 ◽  
Author(s):  
Olivier Terrier ◽  
Virginie Marcel ◽  
Gaëlle Cartet ◽  
David P. Lane ◽  
Bruno Lina ◽  
...  

Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Nahla Muhammad Saeed ◽  
Peshnyar Muhammad Atta Rashid ◽  
Hiewa Othman Dyary

Abstract Background Influenza viruses are a continuous threat to avian and mammalian species, causing epidemics and pandemics. After the circulation of H5N1 in 2006, 2015, and 2016 in Iraq, an H5N8 influenza virus emerged in domestic geese in Sulaymaniyah Province, Iraq. This study analyzed the genetic characteristics of the Iraqi H5N8 viruses. Results An HPAI virus subtype H5N8 was identified from domestic backyard geese in the Kurdistan Region, north Iraq. Phylogenic analyses of the hemagglutinin (HA) and neuraminidase (NA) genes indicated that Iraq H5N8 viruses belonged to clade 2.3.4.4 group B and clustered with isolates from Iran, Israel, and Belgium. Genetic analysis of the HA gene indicated molecular markers for avian-type receptors. Characterization of the NA gene showed that the virus had sensitive molecular markers for antiviral drugs. Conclusions This is the first study ever on H5N8 in Iraq, and it is crucial to understand the epidemiology of the viruses in Iraq and the Middle East. The results suggest a possible role of migratory birds in the introduction of HPAI subtype H5N8 into Iraq.


1991 ◽  
Vol 106 (2) ◽  
pp. 383-395 ◽  
Author(s):  
S. Nakajima ◽  
K. Nakamura ◽  
F. Nishikawa ◽  
K. Nakajima

SUMMARYFrom January 1985 to March 1989, off-season viruses of H1N1 and H3N2 subtypes of influenza A viruses were isolated on five occasions in Japan. The HA gene sequences of the influenza A(H1N1) and A(H3N2) viruses isolated in Japan from 1985–9 were analysed and the phylogenetic tree for each subtype virus was constructed to determine any genetic relationship between viruses isolated in off-seasons and the epidemic viruses of the following influenza seasons. In one instance with H1N1 viruses in 1986 and in two instances with H3N2 viruses in 1985 and 1987, the spring isolates were genetically close to some of the winter isolates and were considered to be the parental viruses of the following influenza seasons. However, even in these cases, influenza viruses of the same subtype with different lineages co-circulated in Japan.


2008 ◽  
Vol 06 (05) ◽  
pp. 981-999 ◽  
Author(s):  
XIU-FENG WAN ◽  
MUFIT OZDEN ◽  
GUOHUI LIN

The influenza A virus is a negative-stranded RNA virus composed of eight segmented RNA molecules, including polymerases (PB2, PB1, PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix protein (MP), and nonstructure gene (NS). The influenza A viruses are notorious for rapid mutations, frequent reassortments, and possible recombinations. Among these evolutionary events, reassortments refer to exchanges of discrete RNA segments between co-infected influenza viruses, and they have facilitated the generation of pandemic and epidemic strains. Thus, identification of reassortments will be critical for pandemic and epidemic prevention and control. This paper presents a reassortment identification method based on distance measurement using complete composition vector (CCV) and segment clustering using a minimum spanning tree (MST) algorithm. By applying this method, we identified 34 potential reassortment clusters among 2,641 PB2 segments of influenza A viruses. Among the 83 serotypes tested, at least 56 (67.46%) exchanged their fragments with another serotype of influenza A viruses. These identified reassortments involve 1,957 H2N1 and 1,968 H3N2 influenza pandemic strains as well as H5N1 avian influenza virus isolates, which have generated the potential for a future pandemic threat. More frequent reassortments were found to occur in wild birds, especially migratory birds. This MST clustering program is written in Java and will be available upon request.


2011 ◽  
Vol 92 (6) ◽  
pp. 1416-1427 ◽  
Author(s):  
Edgar Simulundu ◽  
Akihiro Ishii ◽  
Manabu Igarashi ◽  
Aaron S. Mweene ◽  
Yuka Suzuki ◽  
...  

Although the quest to clarify the role of wild birds in the spread of the highly pathogenic H5N1 avian influenza virus (AIV) has yielded considerable data on AIVs in wild birds worldwide, information regarding the ecology and epidemiology of AIVs in African wild birds is still very limited. During AIV surveillance in Zambia (2008–2009), 12 viruses of distinct subtypes (H3N8, H4N6, H6N2, H9N1 and H11N9) were isolated from wild waterfowl. Phylogenetic analyses demonstrated that all the isolates were of the Eurasian lineage. Whilst some genes were closely related to those of AIVs isolated from wild and domestic birds in South Africa, intimating possible AIV exchange between wild birds and poultry in southern Africa, some gene segments were closely related to those of AIVs isolated in Europe and Asia, thus confirming the inter-regional AIV gene flow among these continents. Analysis of the deduced amino acid sequences of internal proteins revealed that several isolates harboured particular residues predominantly observed in human influenza viruses. Interestingly, the isolates with human-associated residues exhibited higher levels of virus replication in the lungs of infected mice and caused more morbidity as measured by weight loss than an isolate lacking such residues. This study stresses the need for continued monitoring of AIVs in wild and domestic birds in southern Africa to gain a better understanding of the emergence of strains with the potential to infect mammals.


2015 ◽  
Vol 89 (12) ◽  
pp. 6218-6226 ◽  
Author(s):  
Martha I. Nelson ◽  
Jered Stratton ◽  
Mary Lea Killian ◽  
Alicia Janas-Martindale ◽  
Amy L. Vincent

ABSTRACTThe diversity of influenza A viruses in swine (swIAVs) presents an important pandemic threat. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. Through phylogenetic analysis of contemporary swIAVs in the United States, we demonstrate that human-to-swine transmission of pandemic H1N1 (pH1N1) viruses has occurred continuously in the years following the 2009 H1N1 pandemic and has been an important contributor to the genetic diversity of U.S. swIAVs. Although pandemic H1 and N1 segments had been largely removed from the U.S. swine population by 2013 via reassortment with other swIAVs, these antigens reemerged following multiple human-to-swine transmission events during the 2013-2014 seasonal epidemic. These findings indicate that the six internal gene segments from pH1N1 viruses are likely to be sustained long term in the U.S. swine population, with periodic reemergence of pandemic hemagglutinin (HA) and neuraminidase (NA) segments in association with seasonal pH1N1 epidemics in humans. Vaccinating U.S. swine workers may reduce infection of both humans and swine and in turn limit the role of humans as sources of influenza virus diversity in pigs.IMPORTANCESwine are important hosts in the evolution of influenza A viruses with pandemic potential. Here, we analyze influenza virus sequence data generated by the U.S. Department of Agriculture's national surveillance system to identify the central role of humans in the reemergence of pandemic H1N1 (pH1N1) influenza viruses in U.S. swine herds in 2014. These findings emphasize the important role of humans as continuous sources of influenza virus diversity in swine and indicate that influenza viruses with pandemic HA and NA segments are likely to continue to reemerge in U.S. swine in association with seasonal pH1N1 epidemics in humans.


Sign in / Sign up

Export Citation Format

Share Document