Diversity and distribution of Triassic bryozoans in the aftermath of the end-Permian mass extinction

2008 ◽  
Vol 82 (2) ◽  
pp. 362-371 ◽  
Author(s):  
Catherine M. Powers ◽  
Joseph F. Pachut

Seventy-three species of stenolaemate bryozoans are documented worldwide from the Triassic. Stage-level diversity and paleogeographical analyses reveal that the recovery of bryozoans following the end-Permian mass extinction was delayed until the Middle Triassic. Early Triassic bryozoans faunas, dominated by members of the Order Trepostomida, were depauperate and geographically restricted. Bryozoan diversity increased during the Middle Triassic and diversity peaked in the Carnian (early Late Triassic). High extinction rates throughout the Late Triassic led to the extinction of all stenolaemate orders except the Cyclostomida by the end of the Triassic. Comparisons between global carbonate rock volume, outcrop surface area, and bryozoan diversity indicate that the documented diversity pattern for bryozoans may have been related, in part, to the availability of carbonate environments during the Triassic.

Paleobiology ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 409-425 ◽  
Author(s):  
Jonathan L. Payne ◽  
Mindi Summers ◽  
Brianna L. Rego ◽  
Demir Altiner ◽  
Jiayong Wei ◽  
...  

Delayed biotic recovery from the end-Permian mass extinction has long been interpreted to result from environmental inhibition. Recently, evidence of more rapid recovery has begun to emerge, suggesting the role of environmental inhibition was previously overestimated. However, there have been few high-resolution taxonomic and ecological studies spanning the full Early and Middle Triassic recovery interval, leaving the precise pattern of recovery and underlying mechanisms poorly constrained. In this study, we document Early and Middle Triassic trends in taxonomic diversity, assemblage evenness, and size distribution of benthic foraminifers on an exceptionally exposed carbonate platform in south China. We observe gradual increases in all metrics through Early Triassic and earliest Middle Triassic time, with stable values reached early in the Anisian. There is little support in our data set for a substantial Early Triassic lag interval during the recovery of foraminifers or for a stepwise recovery pattern. The recovery pattern of foraminifers on the GBG corresponds well with available global data for this taxon and appears to parallel that of many benthic invertebrate clades. Early Triassic diversity increase in foraminifers was more gradual than in ammonoids and conodonts. However, foraminifers continued to increase in diversity, size, and evenness into Middle Triassic time, whereas diversity of ammonoids and conodonts declined. These contrasts suggest decoupling of recovery between benthic and pelagic environments; it is unclear whether these discrepancies reflect inherent contrasts in their evolutionary dynamics or the differential impact of Early Triassic ocean anoxia or associated environmental parameters on benthic ecosystems.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11654
Author(s):  
Evelyn Friesenbichler ◽  
Michael Hautmann ◽  
Hugo Bucher

The recovery of marine life from the end-Permian mass extinction event provides a test-case for biodiversification models in general, but few studies have addressed this episode in its full length and ecological context. This study analyses the recovery of marine level-bottom communities from the end-Permian mass extinction event over a period of 15 Ma, with a main focus on the previously neglected main phase during the Middle Triassic. Our analyses are based on faunas from 37 lithological units representing different environmental settings, ranging from lagoons to inner, mid- and outer ramps. Our dataset comprises 1562 species, which belong to 13 higher taxa and 12 ecological guilds. The diversification pattern of most taxa and guilds shows an initial Early Triassic lag phase that is followed by a hyperbolic diversity increase during the Bithynian (early middle Anisian) and became damped later in the Middle Triassic. The hyperbolic diversity increase is not predicted by models that suggest environmental causes for the initial lag phase. We therefore advocate a model in which diversification is primarily driven by the intensity of biotic interactions. Accordingly, the Early Triassic lag phase represents the time when the reduced species richness in the wake of the end-Permian mass extinction was insufficient for stimulating major diversifications, whereas the Anisian main diversification event started when self-accelerating processes became effective and stopped when niche-crowding prevented further diversification. Biotic interactions that might drive this pattern include interspecific competition but also habitat construction, ecosystem engineering and new options for trophic relationships. The latter factors are discussed in the context of the resurgence of large carbonate platforms, which occurred simultaneously with the diversification of benthic communities. These did not only provide new hardground habitats for a variety of epifaunal taxa, but also new options for grazing gastropods that supposedly fed from microalgae growing on dasycladaceans and other macroalgae. Whereas we do not claim that changing environmental conditions were generally unimportant for the recovery of marine level-bottom communities, we note that their actual role can only be assessed when tested against predictions of the biotic model.


2018 ◽  
Vol 5 (1) ◽  
pp. 171548 ◽  
Author(s):  
Jeffrey R. Thompson ◽  
Shi-xue Hu ◽  
Qi-Yue Zhang ◽  
Elizabeth Petsios ◽  
Laura J. Cotton ◽  
...  

The Permian–Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian–Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.


Geology ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 609-613 ◽  
Author(s):  
Xiangdong Zhao ◽  
Daran Zheng ◽  
Guwei Xie ◽  
Hugh C. Jenkyns ◽  
Chengguo Guan ◽  
...  

Abstract The end-Permian mass extinction (EPME; ca. 252 Ma) led to profound changes in lacustrine ecosystems. However, whether or not post-extinction recovery of lacustrine ecosystems was delayed has remained uncertain, due to the apparent rarity of Early and Middle Triassic deep perennial lakes. Here we report on mid–Middle Triassic lacustrine organic-rich shales with abundant fossils and tuff interlayers in the Ordos Basin of China, dated to ca. 242 Ma (around the Anisian-Ladinian boundary of the Middle Triassic). The organic-rich sediments record the earliest known appearance, after the mass extinction, of a deep perennial lake that developed at least 5 m.y. earlier than the globally distributed lacustrine shales and mudstones dated as Late Triassic. The fossil assemblage in the organic-rich sediments is diverse and includes plants, notostracans, ostracods, insects, fishes, and fish coprolites, and thus documents a Mesozoic-type, trophically multileveled lacustrine ecosystem. The results reveal the earliest known complex lacustrine ecosystem after the EPME and suggest that Triassic lacustrine ecosystems took at most 10 m.y. to recover fully, which is consistent with the termination of the “coal gap” that signifies substantial restoration of peat-forming forests.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1310-1318 ◽  
Author(s):  
Randall B. Irmis ◽  
Jessica H. Whiteside

During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 397-413 ◽  
Author(s):  
Margaret L. Fraiser ◽  
David J. Bottjer

AbstractThe end-Permian mass extinction is commonly portrayed not only as a massive biodiversity crisis but also as the time when marine benthic faunas changed from the Paleozoic Fauna, dominated by rhynchonelliform brachiopod taxa, to the Modern Fauna, dominated by gastropod and bivalve taxa. After the end-Permian mass extinction, scenarios involving the Mesozoic Marine Revolution portray a steady increase in numerical dominance by these benthic molluscs as largely due to the evolutionary effects of an “arms race.” We report here a new global paleoecological database from study of shell beds that shows a dramatic geologically sudden earliest Triassic takeover by bivalves as numerical dominants in level-bottom benthic marine communities, which continued through the Early Triassic. Three bivalve genera were responsible for this switch, none of which has any particular morphological features to distinguish it from many typical Paleozoic bivalve genera. The numerical success of these Early Triassic bivalves cannot be attributed to any of the well-known morphological evolutionary innovations of post-Paleozoic bivalves that characterize the Mesozoic Marine Revolution. Rather, their ability to mount this takeover most likely was due to the large extinction of rhynchonelliform brachiopods during the end-Permian mass extinction and aided by their environmental distribution and physiological characteristics that enabled them to thrive during periods of oceanic and atmospheric stress during the Permian/Triassic transition.


Paleobiology ◽  
1990 ◽  
Vol 16 (2) ◽  
pp. 187-203 ◽  
Author(s):  
Douglas H. Erwin

Paleozoic and post-Paleozoic marine faunas are strikingly different in composition. Paleozoic marine gastropods may be divided into archaic and modern groups based on taxonomic composition, ecological role, and morphology. Paleozoic assemblages were dominated by pleurotomariids (Eotomariidae and Phymatopleuridae), the Pseudozygopleuridae, and, to a lesser extent, the Euomphalidae, while Triassic assemblages were dominated by the Trochiina, Amberleyacea, and new groups of Loxonematoidea and Pleurotomariina. Several new groups of caenogastropods appeared as well. Yet the importance of the end-Permian mass extinction in generating these changes has been questioned. As part of a study of the diversity history of upper Paleozoic and Triassic gastropods, to test the extent to which taxonomic and morphologic trends established in the late Paleozoic are continued after the extinction, and to determine the patterns of selectivity operating during the extinction, I assembled generic and morphologic diversity data for 396 genera in 75 families from the Famennian through the Norian stages. Within this interval, gastropod genera underwent an adaptive radiation during the Visean and Namurian, largely of pleurotomariids, a subsequent period of dynamic stability through the Leonardian, a broad-based decline during the end-Permian mass extinction, and a two-phase post-extinction rebound during the Triassic. The patterns of generic diversity within superfamily-level clades were analyzed using Q-mode factor analysis and detrended correspondence analysis.The results demonstrate that taxonomic affinity, previous clade history, generic age, and gross morphology did not determine survival probability of genera during the end-Permian extinction, with the exception of the bellerophontids, nor did increasing diversity within clades or expansion of particular morphologies prior to the extinction facilitate survival during the extinction or success after it. The pleurotomariids diversified during the Lower Permian, but were heavily hit by the extinction. Similarly, trochiform and turriculate morphologies, among those which Vermeij (1987) has identified as having increased predation resistance, were expanding in the late Paleozoic, but suffered similar extinction rates to other nondiversifying clades. Survival was a consequence of broad geographic and environmental distribution, as was the case during background periods.


2021 ◽  
pp. 1-11
Author(s):  
Martín D. Ezcurra ◽  
Saswati Bandyopadhyay ◽  
Kasturi Sen

Abstract The fossil record of Early Triassic diapsids is very important to understand how the end-Permian mass extinction affected ecosystems and the patterns and processes involved in the subsequent biotic recovery. Vertebrate fossil assemblages of continental deposits in current-day South Africa, China, and Russia are the best source of information of this clade during the aftermath of the extinction event. Although considerably less sampled, the Induan continental rocks of the Panchet Formation of the Damodar Basin (eastern India) have also yielded a relatively diverse vertebrate assemblage composed of fishes, temnospondyls, synapsids, and a single proterosuchid taxon. Here, we report on a small isolated diapsid partial ilium (ISIR 1132) from the upper Panchet Formation. This specimen has a distinct morphology compared to other tetrapods that we know, including a shallow emargination on the dorsal margin of the anterior portion of the iliac blade, and ratio between height of iliac blade versus maximum height of iliac acetabulum at level of the dorsalmost extension of supraacetabular crest ≤0.45. Comparisons and a quantitative phylogenetic analysis found ISIR 1132 as a non-archosauromorph neodiapsid. This new specimen expands the reptile diversity in the Panchet Formation as well as for the rest of Gondwana, where Early Triassic non-archosauromorph neodiapsid species are extremely scarce.


2019 ◽  
Vol 513 ◽  
pp. 144-155 ◽  
Author(s):  
Xiangdong Wang ◽  
Peter A. Cawood ◽  
He Zhao ◽  
Laishi Zhao ◽  
Stephen E. Grasby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document