Investigating the Formation and Growth of α-Particle Radiation-Induced Foci of Altered Hepatocytes: A Model-Based Approach

2006 ◽  
Vol 166 (2) ◽  
pp. 422-430 ◽  
Author(s):  
Annette Kopp-Schneider ◽  
Thomas Haertel ◽  
Iris Burkholder ◽  
Peter Bannasch ◽  
Horst Wesch ◽  
...  
2021 ◽  
Author(s):  
Irene Maier ◽  
Paul M Ruegger ◽  
Julia Deutschmann ◽  
Thomas H. Helbich ◽  
Peter Pietschmann ◽  
...  

Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (–15%) vs. irradiated RM mice (–9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.


2020 ◽  
Vol 25 ◽  
pp. 9-17
Author(s):  
Tom Shaler ◽  
Hua Lin ◽  
James Bakke ◽  
Sophia Chen ◽  
Amber Grover ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Alexander Rühle ◽  
Anca-Ligia Grosu ◽  
Nils H. Nicolay

Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent stromal cells that have gained attention for the treatment of irradiation-induced normal tissue toxicities due to their regenerative abilities. As the vast majority of studies focused on the effects of MSCs for photon irradiation-induced toxicities, little is known about the regenerative abilities of MSCs for particle irradiation-induced tissue damage or the effects of particle irradiation on the stem cell characteristics of MSCs themselves. MSC-based therapies may help treat particle irradiation-related tissue lesions in the context of cancer radiotherapy. As the number of clinical proton therapy centers is increasing, there is a need to decidedly investigate MSC-based treatments for particle irradiation-induced sequelae. Furthermore, therapies with MSCs or MSC-derived exosomes may also become a useful tool for manned space exploration or after radiation accidents and nuclear terrorism. However, such treatments require an in-depth knowledge about the effects of particle radiation on MSCs and the effects of MSCs on particle radiation-injured tissues. Here, the existing body of evidence regarding the particle radiobiology of MSCs as well as regarding MSC-based treatments for some typical particle irradiation-induced toxicities is presented and critically discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sharath P. Sasi ◽  
Daniel Park ◽  
Sujatha Muralidharan ◽  
Justin Wage ◽  
Albert Kiladjian ◽  
...  

Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons (1H) and high charge and energy (HZE) nuclei (e.g., iron-56Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experimentsin vitrowe studied nontargeted effects induced by1H- and56Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2–15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h.Ex vivoanalysis of BM-EPCs from single, low-dose, full-body1H- and56Fe-IR mice demonstrated a cyclical (early 5–24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu.


2020 ◽  
Vol 59 (12) ◽  
pp. 3706
Author(s):  
Barrett J. Taylor ◽  
Adam E. Bourassa ◽  
Michael P. Bradley

2019 ◽  
Vol 46 (5) ◽  
pp. 2487-2496 ◽  
Author(s):  
Saramati Narasimhan ◽  
Haley B. Johnson ◽  
Tanner M. Nickles ◽  
Michael I. Miga ◽  
Nitesh Rana ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
pp. 74-83 ◽  
Author(s):  
David R. Grosshans ◽  
Joseph G. Duman ◽  
M. Waleed Gaber ◽  
Gabriel Sawakuchi

Sign in / Sign up

Export Citation Format

Share Document