Structure of an ovine interferon receptor and its expression in endometrium

1996 ◽  
Vol 17 (3) ◽  
pp. 207-215 ◽  
Author(s):  
S Kaluz ◽  
P A Fisher ◽  
M Kaluzova ◽  
E L Sheldrick ◽  
A P F Flint

ABSTRACT A sheep type I interferon receptor (oIFNAR1) cDNA was isolated from a λ-ZAP library using a reverse transcription (RT)-PCR product probe generated from oestrous endometrial RNA. The oIFNAR1 cDNA was 79, 66 and 95% homologous to human, murine and bovine IFNAR1 cDNAs respectively. The encoded receptor was a 560-amino acid transmembrane protein 80, 66 and 95% similar to human, murine and bovine IFNAR1 respectively. Northern blot analysis of endometrial mRNA revealed the presence of 6·5, 4·3 and 3·7 kb transcripts. Using semi-quantitative RT-PCR the oIFNAR1 mRNA was not found to be down-regulated after 72 h treatment with bovine recombinant IFN-αI in in vitro experiments with endometrial explants.

Zygote ◽  
2004 ◽  
Vol 12 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Kye-Seong Kim ◽  
Myung-Sun Kim ◽  
Soo-Kyung Kim ◽  
Kwang-Hyun Baek

In this study we isolated a murine mAsb-17 from mouse testis by RT-PCR using primers designed based on the sequences from the GenBank database. The sequence analysis showed that mAsb-17 encodes a 295 amino acid polypeptide with a molecular weight of approximately 34 kDa containing two ankyrin repeats and one SOCS box. The amino acid sequence of mASB-17 showed 87.5%, 98.3% and 92.9% identity with that of human, rat and dog, respectively. Interestingly, northern blot analysis showed that mAsb-17 was expressed only in the testis. The expression analysis by RT-PCR for mAsb-17 in mouse indicates that mAsb-17 is expressed from the fourth week after birth to adult, with the highest expression in round spermatids. Both northern blot and RT-PCR analyses suggest that mASB-17 may play essential roles in testis development and spermatogenesis.


1996 ◽  
Vol 133 (3) ◽  
pp. 529-541 ◽  
Author(s):  
A A Cooper ◽  
T H Stevens

VPS10 (Vacuolar Protein Sorting) encodes a large type I transmembrane protein (Vps10p), involved in the sorting of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) to the Saccharomyces cerevisiae lysosome-like vacuole. Cells lacking Vps10p missorted greater than 90% CPY and 50% of another vacuolar hydrolase, PrA, to the cell surface. In vitro equilibrium binding studies established that the 1,380-amino acid lumenal domain of Vps10p binds CPY precursor in a 1:1 stoichiometry, further supporting the assignment of Vps10p as the CPY sorting receptor. Vps10p has been immunolocalized to the late-Golgi compartment where CPY is sorted away from the secretory pathway. Vps10p is synthesized at a rate 20-fold lower that that of its ligand CPY, which in light of the 1:1 binding stoichiometry, requires that Vps10p must recycle and perform multiple rounds of CPY sorting. The 164-amino acid Vps10p cytosolic domain is involved in receptor trafficking, as deletion of this domain resulted in delivery of the mutant Vps10p to the vacuole, the default destination for membrane proteins in yeast. A tyrosine-based signal (YSSL80) within the cytosolic domain enables Vps10p to cycle between the late-Golgi and prevacuolar/endosomal compartments. This tyrosine-based signal is homologous to the recycling signal of the mammalian mannose-6-phosphate receptor. A second yeast gene, VTH2, encodes a protein highly homologous to Vps10p which, when over-produced, is capable of suppressing the CPY and PrA missorting defects of a vps10 delta strain. These results indicate that a family of related receptors act to target soluble hydrolases to the vacuole.


2020 ◽  
Vol 94 (8) ◽  
Author(s):  
Xiang Liu ◽  
Margit Mutso ◽  
Liubov Cherkashchenko ◽  
Eva Zusinaite ◽  
Lara J. Herrero ◽  
...  

ABSTRACT Ross River virus (RRV) belongs to the genus Alphavirus and is prevalent in Australia. RRV infection can cause arthritic symptoms in patients and may include rash, fever, arthralgia, and myalgia. Type I interferons (IFN) are the primary antiviral cytokines and trigger activation of the host innate immune system to suppress the replication of invading viruses. Alphaviruses are able to subvert the type I IFN system, but the mechanisms used are ill defined. In this study, seven RRV field strains were analyzed for induction of and sensitivity to type I IFN. The sensitivities of these strains to human IFN-β varied significantly and were highest for the RRV 2548 strain. Compared to prototype laboratory strain RRV-T48, RRV 2548 also induced higher type I IFN levels both in vitro and in vivo and caused milder disease. To identify the determinants involved in type I IFN modulation, the region encoding the nonstructural proteins (nsPs) of RRV 2548 was sequenced, and 42 amino acid differences from RRV-T48 were identified. Using fragment swapping and site-directed mutagenesis, we discovered that substitutions E402A and R522Q in nsP1 as well as Q619R in nsP2 were responsible for increased sensitivity of RRV 2548 to type I IFN. In contrast, substitutions A31T, N219T, S580L, and Q619R in nsP2 led to induction of higher levels of type I IFN. With exception of E402A, all these variations are common for naturally occurring RRV strains. However, they are different from all known determinants of type I IFN modulation reported previously in nsPs of alphaviruses. IMPORTANCE By identifying natural Ross River virus (RRV) amino acid determinants for type I interferon (IFN) modulation, this study gives further insight into the mechanism of type I IFN modulation by alphaviruses. Here, the crucial role of type I IFN in the early stages of RRV disease pathogenesis is further demonstrated. This study also provides a comparison of the roles of different parts of the RRV nonstructural region in type I IFN modulation, highlighting the importance of nonstructural protein 1 (nsP1) and nsP2 in this process. Three substitutions in nsP1 and nsP2 were found to be independently associated with enhanced type I IFN sensitivity, and four independent substitutions in nsP2 were important in elevated type I IFN induction. Such evidence has clear implications for RRV immunobiology, persistence, and pathology. The identification of viral proteins that modulate type I IFN may also have importance for the pathogenesis of other alphaviruses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


2001 ◽  
Vol 2 (2) ◽  
pp. 145-146
Author(s):  
Suman Lata ◽  
Gideon Schreiber ◽  
Jacob Piehler

2002 ◽  
Vol 49 (2) ◽  
pp. 195-205 ◽  
Author(s):  
KAZUHIKO IMAKAWA ◽  
KAZUHIRO TAMURA ◽  
RITA S-F LEE ◽  
YONGJIE JI ◽  
HIROSHI KOGO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document