scholarly journals A COUP-TF/Svp homolog is highly expressed during vitellogenesis in the mosquito Aedes aegypti

2002 ◽  
Vol 29 (2) ◽  
pp. 223-238 ◽  
Author(s):  
K Miura ◽  
J Zhu ◽  
NT Dittmer ◽  
L Chen ◽  
AS Raikhel

In the mosquito Aedes aegypti, vitellogenesis is activated via an ecdysteroid hormonal cascade initiated by a blood meal. The functional ecdysone receptor is a heterodimer composed of the ecdysone receptor (EcR) and ultraspiracle, the homolog of the retinoid X receptor. The precise tuning of this hormonal response requires participation of both positive and negative transcriptional regulators. In Drosophila, Svp, a homolog of chicken ovalbumin upstream promoter transcription factor (COUP-TF), inhibits ecdysone receptor complex-mediated transactivation in vitro and in vivo. Here we report the cloning and characterization of the Svp homolog in mosquito Aedes aegypti, AaSvp. It possesses a high degree of amino acid sequence similarity to the members of the COUP-TF/Svp subfamily. AaSvp transcripts and protein are present in the fat body at high levels from the state of arrest to about 60 h post blood meal. AaSvp binds strongly to a variety of direct repeats of the sequence AGGTCA, but weakly to inverted repeats such as hsp27 EcRE. Transient transfection assays in Drosophila S2 cells showed that AaSvp was able to repress 20-hydroxyecdysone (20E)-dependent transactivation mediated by the mosquito ecdysteroid receptor complex. These data suggest that AaSvp negatively regulates the 20E signaling in the fat body during mosquito vitellogenesis.

1994 ◽  
Vol 14 (7) ◽  
pp. 4465-4474 ◽  
Author(s):  
C Antoniewski ◽  
M Laval ◽  
A Dahan ◽  
J A Lepesant

The transcription of the Drosophila melanogaster Fbp1 gene is induced by the steroid hormone 20-hydroxyecdysone and restricted to the late-third-instar fat body tissue. In a previous study we showed that the -68 to -138 region relative to the transcription start site acts as an ecdysone-dependent third-instar fat body-specific enhancer in a transgenic assay. Here we report that seven nucleoprotein complexes are formed in vitro on this enhancer when a nuclear extract from late-third-instar fat body is used in a gel shift assay. Accurate mapping of the binding sites of the complexes revealed a remarkably symmetrical organization. Using specific antibodies, one of the complexes was identified as a heterodimer consisting of the ecdysone receptor (EcR) and Ultraspiracle (USP) proteins. The binding site of the heterodimer as defined by mutagenesis and methylation interference experiments bears strong sequence similarity to the canonical hsp27 ecdysone response element, including an imperfect palindromic structure. The two elements diverge at three positions in both half-sites, indicating that the structure of an active EcR/USP binding site allows considerable sequence variations. In vivo footprinting experiments using ligation-mediated PCR and wild-type or ecdysteroid-deficient larvae show that occupancy of the Fbp1 EcR/USP binding site and adjacent region is dependent on a high concentration of ecdysteroids. These results provide strong evidence for a direct role of the EcR/USP heterodimer in driving gene expression in response to changes of the ecdysteroid titer during Drosophila larval development.


2006 ◽  
Vol 70 (4) ◽  
pp. 888-909 ◽  
Author(s):  
Rut Carballido-López

SUMMARY Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.


2021 ◽  
Vol 118 (26) ◽  
pp. e2102417118
Author(s):  
Ya-Zhou He ◽  
Emre Aksoy ◽  
Yike Ding ◽  
Alexander S. Raikhel

Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)–mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.


Author(s):  
Manuela Tietgen ◽  
Laura Leukert ◽  
Julian Sommer ◽  
Jan S Kramer ◽  
Steffen Brunst ◽  
...  

Abstract Objectives This study analysed the novel carbapenem-hydrolysing class D β-lactamase OXA-822 identified in the clinical Acinetobacter calcoaceticus isolate AC_2117. Methods WGS was employed for identification of β-lactamases. Micro-broth dilution was used for evaluation of antibiotic susceptibility of AC_2117 and transformants containing blaOXA-822. After heterologous purification of OXA-822, OXA-359 and OXA-213, enzyme kinetics were determined using spectrometry. The effect of OXA-822 upon meropenem treatment was analysed in the Galleria mellonella in vivo infection model. Results OXA-822 is a member of the intrinsic OXA-213-like family found in A. calcoaceticus and Acinetobacter pittii. Amino acid sequence similarity to the nearest related OXA-359 was 97%. Production of OXA-822, OXA-359 and OXA-213 in Acinetobacter baumannii ATCC® 19606T resulted in elevated MICs for carbapenems (up to 16-fold). Penicillinase activity of the purified OXA-822 revealed high KM values, in the millimolar range, combined with high turnover numbers. OXA-822 showed the highest affinity to carbapenems, but affinity to imipenem was ∼10-fold lower compared with other carbapenems. Molecular modelling revealed that imipenem does not interact with a negatively charged side chain of OXA-822, as doripenem does, leading to the lower affinity. Presence of OXA-822 decreased survival of infected Galleria mellonella larvae after treatment with meropenem. Only 52.7% ± 7.7% of the larvae survived after 24 h compared with 90.9% ± 3.7% survival in the control group. Conclusions The novel OXA-822 from a clinical A. calcoaceticus isolate displayed penicillinase and carbapenemase activity in vitro, elevated MICs in different species and decreased carbapenem susceptibility in A. baumannii in vivo.


1990 ◽  
Vol 110 (3) ◽  
pp. 597-605 ◽  
Author(s):  
R L Gimlich ◽  
N M Kumar ◽  
N B Gilula

Xenopus mRNAs that potentially encode gap junction proteins in the oocyte and early embryo have been identified by low-stringency screening of cDNA libraries with cloned mammalian gap junction cDNAs. The levels of these mRNAs show strikingly different temporal regulation and tissue distribution. Using a nomenclature designed to stress important structural similarities of distinct gap junction gene products, the deduced polypeptides have been designated the Xenopus alpha 1 and alpha 2 gap junction proteins. The alpha 2 gap junction mRNA is a maternal transcript that disappears by the late gastrula stage. It is not detected in any organ of the adult except the ovary, and resides primarily, if not exclusively, in the oocytes and early embryos. The alpha 1 gap junction mRNA appears during organogenesis, and is detected in RNA from a wide variety of organs. It is also found in full-grown oocytes, but is rapidly degraded upon oocyte maturation, both in vivo and in vitro. The alpha 1 and alpha 2 mRNAs encode proteins with different degrees of amino acid sequence similarity to the predominant gap junction subunit of the mammalian heart (connexin 43). Together with our earlier report of a mid-embryonic (beta 1) gap junction mRNA, the results suggest that intercellular communication during oocyte growth and postfertilization development is a complex phenomenon involving the coordinated regulation of several genes.


2000 ◽  
Vol 20 (19) ◽  
pp. 7183-7191 ◽  
Author(s):  
Sang Ki Choi ◽  
DeAnne S. Olsen ◽  
Antonina Roll-Mecak ◽  
Agnes Martung ◽  
Keith L. Remo ◽  
...  

ABSTRACT To initiate protein synthesis, a ribosome with bound initiator methionyl-tRNA must be assembled at the start codon of an mRNA. This process requires the coordinated activities of three translation initiation factors (IF) in prokaryotes and at least 12 translation initiation factors in eukaryotes (eIF). The factors eIF1A and eIF5B from eukaryotes show extensive amino acid sequence similarity to the factors IF1 and IF2 from prokaryotes. By a combination of two-hybrid, coimmunoprecipitation, and in vitro binding assays eIF1A and eIF5B were found to interact directly, and the eIF1A binding site was mapped to the C-terminal region of eIF5B. This portion of eIF5B was found to be critical for growth in vivo and for translation in vitro. Overexpression of eIF1A exacerbated the slow-growth phenotype of yeast strains expressing C-terminally truncated eIF5B. These findings indicate that the physical interaction between the evolutionarily conserved factors eIF1A and eIF5B plays an important role in translation initiation, perhaps to direct or stabilize the binding of methionyl-tRNA to the ribosomal P site.


1994 ◽  
Vol 14 (7) ◽  
pp. 4465-4474
Author(s):  
C Antoniewski ◽  
M Laval ◽  
A Dahan ◽  
J A Lepesant

The transcription of the Drosophila melanogaster Fbp1 gene is induced by the steroid hormone 20-hydroxyecdysone and restricted to the late-third-instar fat body tissue. In a previous study we showed that the -68 to -138 region relative to the transcription start site acts as an ecdysone-dependent third-instar fat body-specific enhancer in a transgenic assay. Here we report that seven nucleoprotein complexes are formed in vitro on this enhancer when a nuclear extract from late-third-instar fat body is used in a gel shift assay. Accurate mapping of the binding sites of the complexes revealed a remarkably symmetrical organization. Using specific antibodies, one of the complexes was identified as a heterodimer consisting of the ecdysone receptor (EcR) and Ultraspiracle (USP) proteins. The binding site of the heterodimer as defined by mutagenesis and methylation interference experiments bears strong sequence similarity to the canonical hsp27 ecdysone response element, including an imperfect palindromic structure. The two elements diverge at three positions in both half-sites, indicating that the structure of an active EcR/USP binding site allows considerable sequence variations. In vivo footprinting experiments using ligation-mediated PCR and wild-type or ecdysteroid-deficient larvae show that occupancy of the Fbp1 EcR/USP binding site and adjacent region is dependent on a high concentration of ecdysteroids. These results provide strong evidence for a direct role of the EcR/USP heterodimer in driving gene expression in response to changes of the ecdysteroid titer during Drosophila larval development.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julie Melendez ◽  
Daniel Sieiro ◽  
David Salgado ◽  
Valérie Morin ◽  
Marie-Julie Dejardin ◽  
...  

AbstractFusion of nascent myoblasts to pre-existing myofibres is critical for skeletal muscle growth and repair. The vast majority of molecules known to regulate myoblast fusion are necessary in this process. Here, we uncover, through high-throughput in vitro assays and in vivo studies in the chicken embryo, that TGFβ (SMAD2/3-dependent) signalling acts specifically and uniquely as a molecular brake on muscle fusion. While constitutive activation of the pathway arrests fusion, its inhibition leads to a striking over-fusion phenotype. This dynamic control of TGFβ signalling in the embryonic muscle relies on a receptor complementation mechanism, prompted by the merging of myoblasts with myofibres, each carrying one component of the heterodimer receptor complex. The competence of myofibres to fuse is likely restored through endocytic degradation of activated receptors. Altogether, this study shows that muscle fusion relies on TGFβ signalling to regulate its pace.


1996 ◽  
Vol 16 (6) ◽  
pp. 2977-2986 ◽  
Author(s):  
C Antoniewski ◽  
B Mugat ◽  
F Delbac ◽  
J A Lepesant

The steroid hormone 20-hydroxyecdysone plays a key role in the induction and modulation of morphogenetic events throughout Drosophila development. Previous studies have shown that a heterodimeric nuclear receptor composed of the EcR and USP proteins mediates the action of the hormone at the transcriptional through binding to palindromic ecdysteroid mediates the action of the hormone at the transcriptional level through binding to palindromic ecdysteroid response elements (EcREs) such as those present in the promoter of the hsp27 gene or the fat body-specific enhancer of the Fbp1 gene. We show that in addition to palindromic EcREs, the EcR/USP heterodimer can bind in vitro with various affinities to direct repetitions of the motif AGGTCA separated by 1 to 5 nucleotides (DR1 to DR5), which are known to be target sites for vertebrate nuclear receptors. At variance with the receptors, EcR/USP was also found to bind to a DR0 direct repeat with no intervening nucleotide. In cell transformation assays, direct repeats DR0 to DR5 alone can render the minimum viral tk or Drosophila Fbp1 promoter responsive to 20-hydroxyecdysone, as does the palindromic hsp27 EcRE. In a transgenic assay, however, neither the palindromic hsp27 element nor direct repeat DR3 alone can make the Fbp1 minimal promoter responsive to premetamorphic ecdysteroid peaks. In contrast, DR0 and DR3 elements, when substituted for the natural palindromic EcRE in the context of the Fbp1 enhancer, can drive a strong fat body-specific ecdysteroid response in transgenic animals. These results demonstrate that directly repeated EcR/USP binding sites are as effective as palindromic EcREs in vivo. They also provide evidence that additional flanking regulatory sequences are crucially required to potentiate the hormonal response mediated by both types of elements and specify its spatial and temporal pattern.


Sign in / Sign up

Export Citation Format

Share Document