Enhanced corticosterone-binding capacity in plasma after stimulation of the rat adrenal cortex: the possibility of a simultaneous release of protein and corticosterone

1987 ◽  
Vol 112 (1) ◽  
pp. 33-41 ◽  
Author(s):  
J. R. Bassett

ABSTRACT Exposure of rats to either footshock or handling stress produced a significant increase in both plasma corticosterone concentration and specific binding capacity. Non-specific binding was eliminated using the synthetic glucocorticoid, dexamethasone. The increase in both plasma corticosterone and specific binding capacity was biphasic following exposure to footshock. Adrenalectomy and pretreatment with betamethasone abolished both phases of the enhanced binding capacity and plasma steroid concentration. Intraperitoneal injection of ACTH (1–24) in animals pretreated with betamethasone resulted in a biphasic rise in plasma concentrations of corticosterone but only the initial increase in binding capacity. Dissociation constant (Kd) values, determined by Scatchard analysis, for adrenalectomized and betamethasone-pretreated animals were 546 and 556 pmol/l respectively. These values were significantly different from the Kd in animals with functional adrenals (631 pmol/l). The results are discussed in the light of a possible specific corticosteroid-binding globulin (CBG)-like binding protein of adrenal origin released in conjunction with corticosterone. This binding protein has a lower affinity for corticosterone and a shorter half-life than CBG. J. Endocr. (1987) 112, 33–41

1986 ◽  
Vol 112 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Jean Paul Dupouy ◽  
Alain Chatelain

Abstract. CBG and pituitary-adrenal activities were investigated in intact rat foetuses, in newborns spontaneously delivered by vaginal way and in postmature foetuses from mothers with delayed parturition caused by daily progesterone injection from day 20 of gestation. The postmature foetuses had lower body weights and higher adrenal weights on day 22, 23 and 24 of gestation than newborns of the same conceptional age. The corticosterone binding capacity of the plasma as well as the binding capacity of CBG for corticosterone decreased in intact foetuses for the last 3 days of gestation and stayed very low in pups from day 0 to day 8 postpartum. These parameters decreased more slowly in postmature foetuses; however, the differences between the latter and intact foetuses or newborns were not statistically significant. Similar evolution occurred in intact pregnant and suckling females as well as in females with prolonged gestation. The fall in CBG activity in normal rat pups and the subsequent rise in free steroids could explain a sharp decrease in plasma ACTH levels as well as the drop in adrenal and plasma corticosterone concentration. In foetuses with prolonged gestation, the same phenomenon did not occur. Stress conditions produced by maintaining growing foetuses in utero and the development of severe jaundice maintained high ACTH levels. In contrast, the fall in adrenal and plasma corticosterone concentrations in spite of the high level of circulating ACTH could be mainly due to the progesterone inhibition of the steroidogenic activity of the foetal adrenals.


1991 ◽  
Vol 65 (1) ◽  
pp. 47-60 ◽  
Author(s):  
D. Dardevet ◽  
M. Manin ◽  
M. Balage ◽  
C. Sornet ◽  
J. Grizard

The influence of protein content of the diet on the plasma concentrations and binding to skeletal muscle and liver of insulin and insulin-like growth factor-1 (IGF-1), was studied in growing rats. Animals with a starting body-weight of 80 g received for an 11 d period isoenergetic diets containing (g/kg dry matter) 155 protein as controls (MP), or 55 (LP) or 300 (HP) protein. Food was offered as six equal meals/d. Daily food intakes provided adequate amounts of energy. Total plasma IGF-1 increased linearly as a function of dietary protein intake. Plasma insulin was lower in the LP than in the MP and HP groups. Hormone binding was studied in wheat-germ agglutinin (WGA) partially purified skeletal muscle receptor preparations. Each 125I-labelled hormone binding was competed for by increasing amounts of homologous and heterologous unlabelled hormone; this displacement needed lower concentrations of homologous than heterologous hormone. When compared with MP-diet feeding, the LP diet resulted in an increased ligand concentration for half-maximal binding. In addition the specific 125I-labelled insulin and 125I-labelled IGF-1 binding increased at all hormone concentrations and, as revealed by Scatchard analysis, the hormone binding capacity also rose (only significant for low-affinity insulin receptors and high-affinity IGF-1 receptors). The HP diet had little effect on hormone binding, except to increase insulin binding at very low insulin concentrations. Hormone binding was further studied in WGA partially purified liver receptor preparations. Those preparations did not exhibit any detectable specific 125I-labelled IGF-1 binding. The specific 125I-labelled insulin binding was not altered by dietary protein level. It is concluded that the increase in skeletal muscle insulin and IGF-1 binding along with a decrease in insulin and IGF-1 in the blood from rats fed on the LP diet, is consistent with the concept of an inverse relationship between plasma hormone and hormone binding. The physiological significance with respect to metabolic adaptation of muscle remains to be established


1989 ◽  
Vol 121 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Tohru Yashiro ◽  
Yoshito Ohba ◽  
Hitomi Murakami ◽  
Takao Obara ◽  
Toshio Tsushima ◽  
...  

Abstract. The presence of IGF-I receptors was demonstrated in normal and neoplastic tissues of human thyroid. Binding of [125I]IGF-I to thyroid membranes was dependent on time and temperature of incubation, and maximal binding was achieved at 4°C and 18 h of incubation. [125I] IGF-I binding was dose-dependently displaced by unlabelled IGF-I; half-maximal inhibition occurred at concentrations of 10–20 μg/l. IGF-II and insulin had relative potencies of 5 and 1% compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with high affinity (Ka: 1.2–8.6 × 109 1/mol) in normal thyroid tissues. Affinity cross-linking and autoradiography demonstrated the type I IGF receptors. Specific binding of [125I] IGF-I in thyroid cancer tissues (9.69 ± 2.07% per 200 μg protein; mean ± sem, N = 8) was significantly (p <0.05) higher than that in the surrounding normal tissues (3.03 ± 0.35%, N = 8). In contrast, there was no difference in the binding between adenoma tissues (4.19 ± 0.53%, N = 5) and the adjacent normal tissues (2.94 ± 0.24%, N = 5). The higher IGF-I binding in cancer tissues was due to an increase in the binding capacity without any change in the affinity. The presence of IGF-I receptors suggests a possible role of IGF-I and its receptors in the growth of thyroid cancer cells.


1975 ◽  
Vol 64 (1) ◽  
pp. 59-66 ◽  
Author(s):  
JOACHIM FROWEIN ◽  
WOLFGANG ENGEL

SUMMARY The specific binding of 125I-labelled human chorionic gonadotrophin (HCG) by rat testicular homogenate as compared with isolated Leydig cells differs with respect to total binding capacity but not to the dissociation constant (KD) as revealed by Scatchard analysis. The maximal binding capacity for [125I]HCG of crude testicular homogenate was 95 ng/g rat testis. Hypophysectomy causes a decline in binding capacity within the first three days but on the 20th and 30th day after hypophysectomy the relative binding capacity no longer differs from that of controls. Binding capacity is enhanced in cryptorchid testes relative to normal, and increases during sexual maturation to a peak shortly before puberty.


1988 ◽  
Vol 254 (1) ◽  
pp. C45-C52 ◽  
Author(s):  
K. Sumimoto ◽  
M. Hirata ◽  
H. Kuriyama

Specific binding of the dihydropyridine Ca2+ antagonist [3H]nifedipine to dispersed smooth muscle cells of the porcine coronary artery was investigated and the findings were compared with the binding to microsomes of smooth muscles. Specific binding to intact cells was saturable and reversible. The dissociation constant was 1.93 +/- 0.42 nM and the maximal binding capacity was 59.6 +/- 12.4 fmol/10(6) cells, as assessed by Scatchard analysis of the equilibrium binding at 25 degrees C. The Kd value with intact cells was slightly higher than that observed with microsomes. Specific binding of [3H]nifedipine to intact cells was completely displaced by unlabeled dihydropyridine derivatives. Among other Ca2+ antagonists, verapamil and d-cis-diltiazem partially and flunarizine completely inhibited the binding. In the case of microsomes, d-cis-diltiazem stimulated the binding of [3H]nifedipine. These results suggest that there may be multiple binding sites for different subclasses of Ca2+ antagonists. Polyvalent cations had no effect on the binding to intact cells. In the case of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated microsomes, the addition of CaCl2 and BaCl2 increased the Bmax, but the Kd value remained unchanged. MnCl2 and CdCl2 had stimulatory or inhibitory effects, depending on the concentrations, whereas LaCl3 had no effect. The effect of membrane depolarization on the binding was also examined. When the intact cells were incubated in high [K+]o solution for 60 min, the Kd was lowered to 1.4 nM from the control value of 2.0 nM, thereby indicating that [3H]nifedipine binds to Ca2+ channels, with a higher affinity, at depolarized states.


1979 ◽  
Vol 65 (6) ◽  
pp. 695-702 ◽  
Author(s):  
Raffaele Di Carlo ◽  
Giampiero Muccioli

The specific binding of labelled human prolactin was determined in 83 human breast carcinomas. Twenty-seven tumors (32.5 %) contained specific binding for prolactin of at least 1 % and were considered prolactin receptor positive. The binding was found linearly related to membrane protein concentration and specific only for lactogenic hormones. By Scatchard analysis the dissociation constant appeared similar to that observed in other target tissues, with a low binding capacity.


1981 ◽  
Vol 241 (6) ◽  
pp. F605-F611 ◽  
Author(s):  
A. Doucet ◽  
A. I. Katz

To identify the site of mineralocorticoid action along the nephron, we measured the specific binding of [3H]aldosterone to nephron segments microdissected from aldosterone-deficient rabbits. Specific binding was defined as the difference between binding measured in the absence or in the presence of 2,000-fold excess of unlabeled hormone (in 10(-18) mol X cm tubule length-1 +/- SE). High specific binding capacity was found in the branched collecting tubule (108 +/- 4), the cortical collecting tubule (119 +/- 9), and the outer medullary collecting tubule (115 +/- 16), whereas specific binding was negligible in the proximal convoluted tubule (8 +/- 9), pars recta (2 +/- 6), medullary thick ascending limb (4 +/- 6), cortical thick ascending limb (6 +/- 2), and distal convoluted tubule (6 +/- 6). In cortical collecting tubules, Scatchard analysis of the specific [3H]aldosterone binding indicated a dissociation constant (KD) of 2.2 X 10(-9) M and a maximum number of binding sites of 157 X 10(-18) mol X cm tubule length-1. The steroid specificity was assessed from the competition of various steroids for [3H]aldosterone binding sites. Receptors from the cortical collecting tubule revealed the following sequence of affinities: aldosterone greater than DOCA greater than spironolactone greater than dexamethasone greater than 5 alpha-dihydrotestosterone = progesterone = 17 beta-estradiol, indicating that the binding sites in the collecting tubule are mineralocorticoid receptors. These results demonstrate significant [3H]aldosterone binding to receptors of high affinity and mineralocorticoid specificity only in the collecting tubule and suggest that this nephron segment is the target site of mineralocorticoid action in the rabbit kidney.


1977 ◽  
Vol 74 (2) ◽  
pp. 163-173 ◽  
Author(s):  
R. J. BARKEY ◽  
J. SHANI ◽  
T. AMIT ◽  
D. BARZILAI

Ovine prolactin was iodinated by the lactoperoxidase method and purified by gel filtration on Sephadex G-100. The binding ability of the labelled hormone was determined, by incubation with liver homogenate from rabbits in late pregnancy, to be 8·8% total binding/ mg protein, of which 86% was specific. The fraction of 125I-labelled ovine prolactin which bound most strongly was subsequently used to study its binding to rat seminal vesicle, prostate and testicular homogenates. The total binding to the seminal vesicle homogenate taken from mature (80-day-old) rats was the highest (11·69%/mg protein), but the greatest degree of binding specificity (82·6%) was to immature (30-day-old) rat prostate. Both total and specific binding to rat testicular homogenate were consistently very low. The binding specificity was demonstrated by displacement studies: while ovine prolactin caused displacement of specific binding, human chorionic gonadotrophin, rat thyrotrophin and human follicle-stimulating hormone did not cause any significant displacement of bound 125I-labelled ovine prolactin. Affinity constants (Ka) and binding capacities for the seminal vesicle and prostate homogenates were determined by Scatchard analysis and the effect of age on these parameters was studied. There was no difference in Ka between the aged (220-day-old), immature and mature rat tissue homogenates; however, a significant fall in binding capacity was observed in the mature rat prostate, and a further fall in the aged rat prostate. No such change was observed in the binding capacity of the seminal vesicle, as estimated by Scatchard analysis, although total and specific binding to the mature homogenates was higher than that of the other age groups.


1985 ◽  
Vol 228 (3) ◽  
pp. 761-764 ◽  
Author(s):  
G N Ciccia-Torres ◽  
J M Dellacha

Specific binding of 125I-labelled human somatotropin was demonstrated in isolated hepatocytes from male mice. In the presence of divalent cations (Ca2+ and Mg2+) the binding of 125I-labelled human somatotropin was competitive with ovine prolactin. Scatchard analysis of competition data indicated a KD of 1.4 +/- 0.2 nM and a binding capacity of 13 000 +/- 2000 sites/cell. In the absence of divalent cations and in the presence of EDTA, human and bovine somatotropins were found to be equally effective to displace bound 125I-labelled human somatotropin, while ovine prolactin showed a weak competition. In this case, the binding capacity was 8400 +/- 1500 sites/cell and the KD was 1.1 +/- 0.1 nM.


Sign in / Sign up

Export Citation Format

Share Document