Effects of gonadotrophin-releasing hormone, recombinant human activin-A and sex steroid hormones upon the follicle-stimulating isohormones secreted by rat anterior pituitary cells in culture

1992 ◽  
Vol 134 (1) ◽  
pp. 97-106 ◽  
Author(s):  
A. Ulloa-Aguirre ◽  
R. Schwall ◽  
A. Cravioto ◽  
E. Zambrano ◽  
P. Damián-Matsumura

ABSTRACT FSH is produced and secreted from the anterior pituitary gland of rats in multiple molecular forms. At times of high gonadotrophin-releasing hormone (GnRH) and oestrogen output (e.g. the morning of the day of pro-oestrus) the pituitary increases the production of FSH isoforms with isoelectric point (pI) values >5·0, whilst sex steroid deprivation leads to the production of strongly acidic and less in-vitro biologically active FSH molecules. It is not known, however, whether sex steroids modulate the production of specific FSH isoforms by a direct action at the pituitary level or indirectly through altering the rate of synthesis and/or secretion of GnRH. In order to obtain some insight on this issue, we examined the charge heterogeneity of FSH secreted by cultured pituitary cells exposed to different FSH-releasing factors, oestradiol-17β and progesterone, alone or in different time-sequenced combinations. Anterior pituitary glands from 21-day-old female rats were enzymatically dispersed into a single cell suspension and cultured for 5 days. During days 1 to 3, cells were incubated in the absence of factors or steroid hormones; on days 3 to 4, cells were incubated in the absence (controls) or presence of either oestradiol17β (3·67 nmol/l) or oestradiol-17β plus progesterone (3·67 and 31·8 nmol/l respectively). Finally, during days 4 to 6, GnRH (10 nmol/l) or recombinant human activin-A (2 nmol/l) were added to half of all culture wells. Media from each cell group were concentrated and the several forms of secreted FSH were then separated by polyacrylamide gel isoelectric focusing (pH range 6·5–4·0) and quantitated. All media concentrates contained several forms of immunoactive secreted FSH focusing within a pH range of 6·44–4·23. A large amount (51–76%) of total FSH recovered focused within a pI range of 4·9–4·0 (area 3), whilst 20–43% and 4–8% of the total were identified within pi range of 5·9–5·0 (area 2) and 6·5–6·0 (area 1) respectively. Addition of GnRH to control or oestradiol-primed cells significantly increased the release of FSH isoforms recovered within area 2 compared with the remaining groups (per cent (±s.d.) FSH recovered within area 2 in groups treated with GnRH and those treated with oestradiol plus GnRH= 43·2±2·0 and 39·4±2·5 of total respectively; control groups and groups treated with oestradiol-17β, oestradiol-17β plus progesterone and activin-A = 32·1±1·2, 21·7±1·9, 19·7±5·0 and 21·5±4·0% of total respectively; P<0·05 compared with groups exposed to GnRH and oestradiol plus GnRH). The presence of progesterone in the culture media prevented this GnRH-mediated effect. Cells exposed to oestradiol-17β, oestradiol-17β plus progesterone and activin-A (with or without sex steroids) predominantly released FSH forms recovered within the most acidic area of the gel (area 3) (72·9±4·5, 76·6±8·6 and 70·9±5·9% of total respectively; P < 0·05 compared with GnRH-treated and oestradiol-17β plus GnRH-treated groups). There were no between-group differences in the amount of FSH recovered within area 1 (pI 5·6–6·0). FSH molecules that focused within area 2 exhibited a higher receptor-binding activity than those recovered from the most acidic region of the gel (radioreceptor assay/radioimmunoassay FSH activity ratio in area 2 = 2·56±0·29, area 3=0·83±0·03; P<0·01). We conclude that under in-vitro conditions GnRH selectively increases the release of less acidic FSH isoforms possessing an enhanced receptor-binding potency. It is suggested that oestradiol modulates the in-vivo production and secretion of specific FSH isoforms indirectly through temporal modifications in either the rate of synthesis and/or secretion of GnRH at the hypothalamic level or pituitary responsiveness to this releasing hormone. Journal of Endocrinology (1992) 134, 97–106

1986 ◽  
Vol 109 (2) ◽  
pp. 155-161 ◽  
Author(s):  
J. E. A. McIntosh ◽  
R. P. McIntosh

ABSTRACT Our aim was to determine whether release of LH and FSH can be controlled differentially by the characteristics of applied signals of stimulatory gonadotrophin-releasing hormone (GnRH) alone, free of the effects of steroid feedback or other influences from the whole animal. The outputs of both gonadotrophins were significantly correlated (r≈0·90; P<0·0005) when samples of freshly dispersed sheep pituitary cells were perifused in columns for 7 h with medium containing a range of concentrations of GnRH in various patterns of pulses. Hormone released in response to the second, third and fourth pulses from every column was analysed in detail. Dose–response relationships for both LH and FSH were very similar when cells were stimulated with 5–8500 pmol GnRH/1 in 5-min pulses every hour. When GnRH was delivered in pulses at a maximally stimulating level, the outputs of both hormones increased similarly with increasing inter-pulse intervals. Efficiency of stimulation (release of gonadotrophin/unit stimulatory GnRH) decreased (was desensitized) with increasing pulse duration in the same way for both hormones. Thus, varying the dose, interval and duration of GnRH pulses did not alter the proportions of LH and FSH released in the short-term from freshly dissociated cells. However, the same cell preparations released more LH relative to FSH when treated with maximally stimulating levels of GnRH for 3 h in the presence of 10% serum from a sheep in the follicular phase of its ovulatory cycle compared with charcoal-treated serum. Because there was no gonadotrophin synthesis under the conditions used in vitro these results suggest that changes in the LH/FSH ratio seen in whole animals are more likely to result from differential clearance from the circulation, ovarian feedback at the pituitary, differential synthesis in intact tissue or another hormone influencing FSH secretion, rather than from differences in the mechanism of acute release controlled by GnRH. J. Endocr. (1986) 109, 155–161


1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1992 ◽  
Vol 134 (2) ◽  
pp. 177-NP ◽  
Author(s):  
F. Kotsuji ◽  
K. Hosokawa ◽  
T. Tominaga

ABSTRACT To investigate the influence of weight reduction on pituitary function and its modulation by gonadotrophin-releasing hormone (GnRH), female rats were restricted to 10 g food/day for 60 days. GnRH (5 μg) or saline (0·2 ml) were administered daily between days 31 and 60 of the period of underfeeding. Underfeeding brought about a decrease in the pituitary gonadotrophin content, serum levels of gonadotrophins and oestradiol, and the number and size of both LH- and FSH-positive pituitary cells. The administration of GnRH to underfed rats produced an increase in the pituitary and serum gonadotrophin levels and the number and size of both LH- and FSH-positive pituitary cells. These observations suggest that underfeeding and/or weight loss diminish the number and activity of the pituitary gonadotrophs, and that daily administration of GnRH both increases the number of gonadotrophs and augments their activity. Journal of Endocrinology (1992) 134, 177–182


1990 ◽  
Vol 127 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S. Muttukrishna ◽  
P. G. Knight

ABSTRACT Primary cultures of ovine pituitary cells (from adult ewes) were used to investigate the actions of steroid-free bovine follicular fluid (bFF) and highly-purified Mr 32 000 bovine inhibin on basal and gonadotrophin-releasing hormone (GnRH)-induced release of FSH and LH. Residual cellular contents of each hormone were also determined allowing total gonadotrophin content/well to be calculated. As in rats, both crude and highly purified inhibin preparations promoted a dose (P < 0·001)- and time (P < 0·001)-dependent suppression of basal and GnRH-induced release of FSH as well as an inhibition of FSH synthesis, reflected by a fall in total FSH content/well. However, while neither inhibin preparation affected basal release of LH or total LH content/well, GnRH-induced LH release was significantly (P< 0·001) increased by the presence of either bFF (+ 75%) or highly-purified inhibin (+ 64%) in a dose- and time-dependent manner. This unexpected action of bFF on GnRH-induced LH release was abolished in the presence of 5 μl specific anti-inhibin serum, confirming that the response was indeed mediated by inhibin. Furthermore, neither oestradiol-17β (1 pmol/l–10 nmol/l) nor monomeric α-subunit of bovine inhibin (2·5–40 ng/ml) significantly affected basal or GnRH-induced release of LH. These in-vitro findings for the ewe lend support to a number of recent in-vivo observations and indicate that, in addition to its well-documented suppressive effect on the synthesis and secretion of FSH, inhibin may actually facilitate LH release in this species, in marked contrast to its action in the rat. Journal of Endocrinology (1990) 127, 149–159


1983 ◽  
Vol 98 (3) ◽  
pp. 411-421 ◽  
Author(s):  
R. P. McIntosh ◽  
J. E. A. McIntosh

The effects were studied of varying the frequency, width and amplitude of pulses of gonadotrophin releasing hormone (GnRH) on the release of LH from anterior pituitary cells. Dispersed sheep cells supported in Sephadex were perifused with medium for 10 h and stimulated with different constant pulse patterns of GnRH. The timing of release of LH was measured by radioimmunoassay of the effluent fractions. Pulses of GnRH ranging in duration from 2 min every 8 min to 16 min every 128 min, and in concentration from 1·7 pmol/l to 250 nmol/l were applied to the cells, as well as continuous stimulation. Comparisons of differences between LH release patterns among samples of the same preparation of cells were used to demonstrate the effects of different GnRH stimulatory regimes. It was concluded that (1) the frequency of GnRH stimulation was important to the nature of LH release (periods shorter than about 16 min between pulses reduced LH output and caused faster desensitization of response), (2) the pulse width of GnRH input was important (the rising edge of the pulse produced greater LH output per unit of GnRH input than did continued application of GnRH within a pulse and wider pulses combined with shorter periods reduced LH output) and (3) over a threshold value of 5–10 nmol GnRH/1 pulse amplitude had little further influence on LH output or rate of desensitization in dispersed cells. These findings reinforce the hypothesis that the rising edge of the GnRH pulse is the major stimulant to LH release.


1988 ◽  
Vol 119 (2) ◽  
pp. 233-241 ◽  
Author(s):  
P. G. Farnworth ◽  
D. M. Robertson ◽  
D. M. de Kretser ◽  
H. G. Burger

ABSTRACT The effects of 31 kDa bovine inhibin on the release of FSH and LH stimulated by gonadotrophin-releasing hormone (GnRH) or its agonist analogue buserelin have been studied using 5-day-old cultures of pituitary cells prepared from adult male Sprague–Dawley rats. Exposure of cultures to increasing concentrations of inhibin for 3 days before and during a 4-h stimulation with GnRH resulted in the progressive suppression of both basal and stimulated gonadotrophin release. At the highest inhibin concentrations FSH release was abolished (inhibin median inhibitory concentration (IC50) = 0·15 U/ml) whereas LH release was suppressed by 75% (IC50 = 0·93 U/ml). To correct for the reduced size of the FSH pool resulting from inhibin pretreatment, the amount of FSH or LH released by an agonist was expressed as a proportion of the total hormone available for release in each case. Following this adjustment, concentrations of inhibin producing maximal effects increased the GnRH median effective concentration for FSH release 4·1-fold and that for LH release 2·2-fold, with inhibin IC50 values of 0·45 and 0·32 U/ml respectively. Inhibin also suppressed the maximum proportion of both FSH and LH that excess GnRH released in 4 h by 36%, with IC50 values of 0·53 and 0·76 U/ml respectively. These effects were not changed by reduction of the inhibin pretreatment period from 3 days to 1 day or by exclusion of inhibin during the stimulation period. After a 3-day pretreatment, inhibin inhibited gonadotrophin release by buserelin less effectively than that by GnRH, but the pattern of antagonism was the same. The results show that purified bovine inhibin antagonizes the release of both FSH and LH stimulated by either GnRH or buserelin in vitro by reducing the apparent potency of GnRH agonists and by decreasing the proportion of total available gonadotrophin that can be released by an excess of GnRH agonist. Higher concentrations of inhibin are required for these common actions against stimulated release of FSH and LH than for the inhibition of FSH tonic synthesis/basal release, indicating one or more secondary sites of inhibin action in addition to its primary selective action to suppress the constitutive synthesis of FSH. J. Endocr. (1988) 119, 233–241


1977 ◽  
Vol 75 (2) ◽  
pp. 277-283 ◽  
Author(s):  
N. BARDEN ◽  
A. BETTERIDGE

The addition of luteinizing hormone releasing hormone (LH-RH) to cultures of monolayers of rat anterior pituitary cells was shown to increase both the concentrations of prostaglandins E1 and E2 (PGE) in the cells and the release of LH over similar ranges of concentrations of LH-RH (10−6 to 10−10 mol/l). The peak concentration of PGE was observed after 2·5 h. The stimulation of the level of PGE in the cells by LH-RH was completely inhibited by two inhibitors of prostaglandin synthetase, which only partially inhibited the stimulation of LH release. Therefore the increased concentration of PGE was not obligatory for the effect of LH-RH on LH release. It was also shown that monobutyryl cyclic AMP stimulated the intracellular concentration of PGE and it is suggested that the stimulation of PGE levels may be mediated by increased levels of cyclic AMP in the cells after the addition of LH-RH.


1994 ◽  
Vol 140 (3) ◽  
pp. 483-493 ◽  
Author(s):  
S Muttukrishna ◽  
P G Knight

Abstract To investigate the extent to which the direct actions of inhibin, activin and oestradiol on pituitary output of FSH and LH are dependent on the presence of functional gonadotrophin-releasing hormone (GnRH) receptors, we have compared the effects of these agents on cultured ovine pituitary cells derived from control and GnRH agonist-suppressed ewes. Chronic treatment with GnRH agonist reduced plasma LH and FSH levels (P<0·01) and abolished GnRH-induced release of LH and FSH both in vivo and in vitro. As expected, basal LH release and LH cell content in vitro were drastically reduced in GnRH agonist-suppressed cells (P<0·001). However, basal FSH release and FSH cell content were approximately twofold higher than in control cells (P<0·001). Irrespective of whether the cells had been desensitized to GnRH, inhibin and oestradiol were both found to suppress basal FSH release and FSH cell content in a dose-dependent fashion (P<0·001). Although inhibin had no effect on basal release of LH from control cells, it markedly enhanced GnRH-induced release (P<0·001). In contrast, inhibin increased (P<0·001) basal LH release from GnRH agonist-suppressed cells (which were unresponsive to the GnRH challenge). Inhibin had no overall effect on total LH content/well for either control or GnRH agonist-suppressed cells. Treatment with oestradiol, on the other hand, reduced total LH content/well, an effect which was more pronounced with GnRH agonist-suppressed cells (−44%; P<0·001) than with control cells (−14%, P<0·01). Whereas in control cells activin had no significant effect on any aspect of FSH production examined, in GnRH agonist-treated cells activin enhanced basal FSH release, residual cell content and total FSH content/well (P<0·001). Altering GnRH receptor status also modified the LH response to activin. With control cells activin increased basal release (P<0·001), decreased GnRH-induced release (P<0·001) and increased total LH content/well (P<0·001). With GnRH agonist-treated cells, however, activin had a uniform inhibitory effect on each aspect of LH production examined (P<0·001 in each case). It was concluded that desensitization of ovine gonadotrophs to GnRH by chronic agonist treatment results in a paradoxical enhancement of FSH output in vitro but has little effect on the responsiveness of the cells (in terms of gonadotrophin release and content) to either inhibin or oestradiol. In contrast, GnRH agonist treatment leads to qualitative changes in cellular reponsiveness to activin. Journal of Endocrinology (1994) 140, 483–493


Sign in / Sign up

Export Citation Format

Share Document