Degradation of IGF-binding protein-3 by proteases in cultured FRTL-5 rat thyroid cells

1997 ◽  
Vol 152 (2) ◽  
pp. 265-274 ◽  
Author(s):  
J F Wang ◽  
G P Becks ◽  
D J Hill

Abstract In this study, we have found that IGF-binding protein-3 (IGFBP-3) in calf serum added to tissue culture medium is degraded by cultured FRTL-5 cells and a major 31 kDa fragment of IGFBP-3 is produced. When FRTL-5 rat thyroid cells were cultured in 6H medium (modified F-12M medium containing TSH, insulin, hydrocortisone, somatostatin, transferrin, and glycyl-histidyl-lysine) containing 5% calf serum, both 44–46 and 31 kDa IGFBPs were found in conditioned medium by ligand blot analysis using 125I-labelled IGF-II. However, predominantly the 44–46 kDa IGFBP was detected in unconditioned 6H medium containing 5% calf serum. When calf serum in the media was replaced by human serum similar results were obtained, and the 44–46 kDa and 31 kDa IGFBPs were recognized using a human IGFBP-3 antibody following Western blot analysis. FRTL-5 cells secreted only small amounts of an endogenous 29 kDa IGFBP, thought to be IGFBP-5. To separate the 31 kDa fragment of IGFBP-3 from the endogenous IGFBP-5, culture media were fractionated by concanavalin-A–Sepharose chromatography and aliquots of both flow-through and eluate from the column were analyzed by ligand blotting. A 31 kDa IGFBP was found in the eluate fractions from concanavalin-A–Sepharose chromatography following the separation of conditioned 6H medium supplemented with calf serum, suggesting that this species was an N-linked glycoprotein and could be derived from the degradation of serum IGFBP-3 by FRTL-5 cells. Using a modified zymographic assay, we examined whether the degradation of IGFBP-3 could depend on the cell membrane. Confluent FRTL-5 cells were washed with PBS and overlaid with liquid agarose solution. After the agarose had solidified, unconditioned 6H medium containing 5% calf serum was incubated with the cells at 37 °C for 16 h. Both 44–46 and 31 kDa IGFBP species were found in the overlying, conditioned medium by ligand blot. However, the 31 kDa IGFBP was not found in medium in the absence of FRTL-5 cells, and no IGFBP could be found in serum-free conditioned medium from agarose-covered FRTL-5 cells. This suggests that the 44–46 kDa IGFBP-3 in serum was degraded to yield a 31 kDa fragment, while any endogenous IGFBP-5 could not pass out of the agarose. The degradation of 44–46 kDa IGFBP-3 in the modified zymographic assay was inhibited by phenylmethylsulfonyl fluoride, EDTA, and aprotinin, but not by leupeptin. In summary, these results indicated that IGFBP-3 in calf serum added to culture medium could be degraded by FRTL-5 cells and that this may involve calcium-dependent serine proteases. Journal of Endocrinology (1997) 152, 265–274

2006 ◽  
Vol 16 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Tiffany G. Harris ◽  
Howard D. Strickler ◽  
Herbert Yu ◽  
Michael N. Pollak ◽  
E. Scott Monrad ◽  
...  

2005 ◽  
Vol 185 (3) ◽  
pp. 467-476 ◽  
Author(s):  
Teresa Priego ◽  
Miriam Granado ◽  
Ana Isabel Martín ◽  
Asunción López-Calderón ◽  
María Angeles Villanúa

The aim of this study was to investigate whether glucocorticoid administration had a beneficial effect on serum concentrations of insulin-like growth factor I (IGF-I) and on IGF-binding protein 3 (IGFBP-3) in rats injected with lipopolysaccharide (LPS). Adult male rats were injected with LPS or saline and pretreated with dexamethasone or saline. Dexamethasone administration decreased growth hormone (GH) receptor and IGF-I mRNA levels in the liver of control rats. LPS decreased GH receptor and IGF-I gene expression in the liver of saline-treated rats but not in the liver of dexamethasone-pretreated rats. In the kidney, GH receptor mRNA levels were not modified by dexamethasone or LPS treatment. However, LPS decreased renal IGF-I gene expression and dexamethasone pretreatment prevented this decrease. Serum concentrations of IGF-I were decreased by LPS, and dexamethasone pretreatment attenuated this effect. The gene expression of IGFBP-3 in the liver and kidney and its circulating levels were decreased by LPS. In control rats dexamethasone increased circulating IGFBP-3 and its gene expression in the liver, and decreased the proteolysis of this protein. Dexamethasone pretreatment attenuated the LPS-induced decrease in IGFBP-3 gene expression in the liver and prevented the LPS-induced decrease in IGFBP-3 gene expression in the kidney. Moreover, dexamethasone pretreatment attenuated the LPS-induced decrease in serum concentrations of IGFBP-3 and decreased the LPS-induced IGFBP-3 proteolysis in serum. In conclusion, dexamethasone pretreatment partially attenuates the inhibitory effect of LPS on serum IGF-I by blocking the decrease of its gene expression in the kidney as well as by attenuating the decrease in serum concentrations of IGFBP-3.


2007 ◽  
Vol 92 (9) ◽  
pp. 3660-3666 ◽  
Author(s):  
Iona Cheng ◽  
Katherine DeLellis Henderson ◽  
Christopher A. Haiman ◽  
Laurence N. Kolonel ◽  
Brian E. Henderson ◽  
...  

2000 ◽  
Vol 71 (2) ◽  
pp. 178-188
Author(s):  
Hong-Gu LEE ◽  
Renato Santa Ana VEGA ◽  
Long Thang PHUNG ◽  
Nobuyoshi MATSUNAGA ◽  
Hideto KUWAYAMA ◽  
...  

Endocrinology ◽  
2002 ◽  
Vol 143 (4) ◽  
pp. 1199-1205 ◽  
Author(s):  
Bing-Kun Chen ◽  
Michael T. Overgaard ◽  
Laurie K. Bale ◽  
Zachary T. Resch ◽  
Michael Christiansen ◽  
...  

Abstract The IGF-binding protein-4 (IGFBP-4) protease system is an important regulator of local IGF bioavailability and cell growth. Recently, the IGF-dependent IGFBP-4 protease secreted by cultured human fibroblasts was identified as pregnancy-associated plasma protein A (PAPP-A). In pregnancy serum, PAPP-A circulates as a disulfide-bound complex with the precursor form of major basic protein (pro-MBP), and in this complex PAPP-A’s proteolytic activity is not evident. In this study we analyzed the IGFBP-4 protease system in normal human fibroblasts to determine regulation outside of pregnancy. Treatment with the phorbol ester tumor promoter, β-phorbol 12,13-didecanoate (β-PDD), resulted in time-dependent inhibition of the IGF-dependent IGFBP-4 protease activity in cell-conditioned medium, which was evident at 6 h and complete by 24 h. PAPP-A mRNA was constitutively expressed in control cells, and levels were decreased only after 24 h of β-PDD treatment. Secretion of PAPP-A protein into conditioned medium did not change with β-PDD treatment. On the other hand, pro-MBP mRNA was undetectable in control human fibroblasts, and treatment with β-PDD induced pro-MBP mRNA and protein expression within 6 h. β-PDD-induced pro-MBP mRNA expression and protease inhibition were blocked with an inhibitor of RNA synthesis, actinomycin D. Actinomycin D had no effect on PAPP-A mRNA levels in the absence or presence of β-PDD. Similarly, transformation of human fibroblasts with simian virus 40 large T antigen resulted in the synthesis of pro-MBP mRNA and protein and inhibition of IGFBP-4 protease activity. Coculture of fibroblasts with cells transfected with pro-MBP cDNA resulted in inhibition of IGFBP-4 proteolytic activity without having any effect on PAPP-A synthesis. In summary, phorbol ester tumor promoters and simian virus 40 transformation regulate IGFBP-4 proteolysis in human fibroblasts through induction of a novel inhibitor of PAPP-A, pro-MBP. These findings expand our understanding of the IGFBP-4 protease system and suggest an additional level of local cell growth control.


Sign in / Sign up

Export Citation Format

Share Document