scholarly journals Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice

2000 ◽  
Vol 167 (1) ◽  
pp. 39-52 ◽  
Author(s):  
CS Atwood ◽  
RC Hovey ◽  
JP Glover ◽  
G Chepko ◽  
E Ginsburg ◽  
...  

Development of the functional secretory epithelium in the mammary gland of the female mouse requires the elongation of the anlage through the mammary fat pad to form the primary/secondary ductal network from which tertiary ductal side-branches and lobuloalveoli develop. In this study we examined the hormonal requirements for the spatial development of the primary/secondary epithelial network and tertiary side-branches by quantifying ductal growth and epithelial cell proliferation in normal and hormone-treated BALB/c mice between 21 and 39 days of age. In normal mice, an allometric increase in ductal length commenced at 31 days of age and resulted in completion of the primary/secondary ductal network by 39 days of age. Concurrent with this allometric growth was a significant increase in cellular proliferation in the terminal end-buds (TEBs) of the ductal epithelium from 29 days of age, as determined by 5-bromo-2'-deoxyuridine (BrdU) incorporation. A level of cellular proliferation similar to that in the TEBs of 33-day-old control mice could be induced in the TEBs of 25-day-old mice following treatment for 1 day with estrogen (E), or progesterone (P) or both (E/P), indicating that both E and P were mitogenic for epithelial cells of the peripubertal TEBs. However, the period of allometric ductal growth in untreated mice did not correspond to an increase in serum E or P (which might have been expected during the estrous cycle). In addition, epithelial growth was not observed in mammary glands from 24-day-old mice that were cultured in vitro with E, P or E/P. In contrast to treatment with E, treatment with P promoted a dramatic increase, relative to control mice, in the number of tertiary branch points upon the primary/secondary ductal network. BrdU labeling of mammary glands from 24- 33-day-old mice pelleted with cholesterol (C), E, P or E/P confirmed the greater mitogenicity of P on the epithelial cells of the secondary/tertiary ducts as compared with C or E. Concurrent with these changes, localized progesterone receptor (PR) expression in clusters of cells in the ductal epithelium was associated with structures that histologically resembled early branch points from ductules. In conclusion, our results suggest that additional endocrine growth factor(s) other than E and P contribute to the development of the primary/secondary ductal network, and that P is responsible for the formation of tertiary side-branches in the mammary glands of mice during puberty.

Author(s):  
Alexa N. Lauer ◽  
Rene Scholtysik ◽  
Andreas Beineke ◽  
Christoph Georg Baums ◽  
Kristin Klose ◽  
...  

Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suis-infected pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP contributes to the inflammatory response via cytokine expression. Here, next generation sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21 enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs overlapped between the three different sample sets. The majority of these GSs are involved in cellular signaling and pathways, immune response, and development, including inflammatory response and hypoxia. In contrast, suppressed GSs observed during in vitro and in vivo S. suis ST2 infections included those, which were involved in cellular proliferation and metabolic processes. This study suggests that similar cellular processes occur in infected human and porcine CP epithelial cells, especially in terms of inflammatory response.


2000 ◽  
Vol 279 (1) ◽  
pp. L43-L51 ◽  
Author(s):  
Patricia R. Chess ◽  
Liana Toia ◽  
Jacob N. Finkelstein

Pulmonary epithelial cells are exposed to mechanical strain during physiological breathing and mechanical ventilation. Strain regulates pulmonary growth and development and is implicated in volutrauma-induced fibrosis. The mechanisms of strain-induced effects are not well understood. It was hypothesized that mechanical strain induces proliferation of pulmonary epithelial cells and that this is mediated by signals initiated within seconds of strain. To test this hypothesis, human pulmonary adenocarcinoma H441 cells were strained in vitro. Cyclic as well as tonic strain resulted in increased cellular proliferation. Western blot analysis of strained cells demonstrated three newly phosphorylated tyrosine residues within 30 s of strain. Phosphorylation of mitogen-activated protein kinases p42/44 increased, electrophoretic mobility shift assay demonstrated activation of transcription factor activating protein-1, and immunohistochemistry demonstrated increased phosphorylation of c- jun in response to strain. The tyrosine kinase inhibitor genistein blocked the strain-induced proliferation. We conclude that strain induces proliferation in pulmonary epithelial cells and that tyrosine kinase activity is necessary to signal the proliferative response to mechanical strain.


2007 ◽  
Vol 204 (11) ◽  
pp. 2521-2528 ◽  
Author(s):  
Daniel Gray ◽  
Jakub Abramson ◽  
Christophe Benoist ◽  
Diane Mathis

Expression of autoimmune regulator (Aire) by thymic medullary epithelial cells (MECs) is critical for central tolerance of self. To explore the mechanism by which such a rare cell population imposes tolerance on the large repertoire of differentiating thymocytes, we examined the proliferation and turnover of Aire+ and Aire− MEC subsets through flow cytometric analysis of 5-bromo-2′deoxyuridine (BrdU) incorporation. The Aire+ MEC subset was almost entirely postmitotic and derived from cycling Aire− precursors. Experiments using reaggregate thymic organ cultures revealed the presence of such precursors among Aire− MECs expressing low levels of major histocompatibility complex class II and CD80. The kinetics of BrdU decay showed the Aire+ population to have a high turnover. Aire did not have a direct impact on the division of MECs in vitro or in vivo but, rather, induced their apoptosis. We argue that these properties strongly favor a “terminal differentiation” model for Aire function in MECs, placing strict temporal limits on the operation of any individual Aire+ MEC in central tolerance induction. We further speculate that the speedy apoptosis of Aire-expressing MECs may be a mechanism to promote cross-presentation of the array of peripheral-tissue antigens they produce.


1999 ◽  
Vol 17 (2) ◽  
pp. 470-470 ◽  
Author(s):  
Ann D. Thor ◽  
Shuqing Liu ◽  
Dan H. Moore II ◽  
Susan M. Edgerton

PURPOSE: To investigate the hypothesis that in vitro bromodeoxyuridine (BrDu) labeling might be superior to MIB-1 immunostaining for prognostic value, because it more selectively labels cells during the S phase. METHODS: Four hundred eighty-six patients with breast cancers (59% lymph node-negative, 41% lymph node-positive) surgically excised between 1988 and 1993 (median follow-up, 62 months) were evaluated for cellular proliferation using prospective in vitro BrDu uptake assays, retrospective mitotic indices, and MIB-1 labeling. RESULTS: MIB-1, BrDu labeling, and mitotic index–derived proliferation data were highly correlated. Each was similarly associated with most other markers of prognosis, although these relationships were not identical. By univariate analysis, nodal status was the most significant prognostic variable for all patients. Higher BrDu labeling index, MIB-1 immunolabeling, and mitotic index were also associated with shortened disease-free survival (DFS) and disease-specific survival for the entire patient group, as well as for node-negative patients. The association between cellular proliferation and survival was much weaker for node-positive patients. Multivariate models confirmed that nodal status, tumor size, and proliferation data predicted survival in all patients as well as those with node-negative disease, although MIB-1 was somewhat more closely associated with outcome than mitotic index or in vitro BrDu data. For patients with T1N0M0 disease (n = 172), the only significant predictors of DFS were proliferation rate (mitotic index or MIB-1) and tumor grade. CONCLUSIONS: Proliferation rate predicts recurrence and survival in breast cancer. This effect is more pronounced in node-negative patients. In vitro BrDu data are not superior to MIB-1 and mitotic counting.


1994 ◽  
Vol 6 (4) ◽  
pp. 453-457 ◽  
Author(s):  
Alain Pierre Théon ◽  
Loretta Metzger ◽  
Stephen Griffey

Cell proliferation in canine, feline, and equine tumors was evaluated using immunohistochemical detection of in vitro 5–bromodeoxyuridine (BrdU) incorporation, proliferating cell nuclear antigen (PCNA), and interchromatin-associated antigen (p105). Ten tumors in each species were analyzed. The tumor proliferative fraction (PF) was defined as the percentage of labeled nuclei for 5,000 tumor nuclei counted. Immunoreactivity was observed with all techniques in all species. A good correlation was observed between the proliferative fractions measured with the BrdU (PFBrdU) and PCNA (PFPCNA) techniques ( rs = 0.523, P = 0.0026). There was no correlation between the PFs measured with the BrdU (PFBrdU) and p105 (PFP105) techniques. Using the median values obtained from the different approaches as cutoff points to define slowly and rapidly proliferating tumors, there was an 80% agreement ( P = 0.009) between PFBrdU and PFPCNA and no agreement between PFBrdU and PFP105 The results of this study indicate that both BrdU and PCNA labeling methods can be used reliably for identifying proliferating cells in animal tumors. In addition, PCNA could be used to replace the BrdU method to assess tumor proliferative fraction because it does not require pretreatment of tissues.


2011 ◽  
Vol 18 (9) ◽  
pp. 1543-1551 ◽  
Author(s):  
Britni M. Arlian ◽  
Juliette K. Tinker

ABSTRACTStaphylococcus aureusis a leading cause of opportunistic infection worldwide and a significant public health threat. The iron-regulated surface determinant A (IsdA) adhesin is essential forS. aureuscolonization on human nasal epithelial cells and plays an important role in iron acquisition and resistance to human skin defenses. Here we investigated the murine immune response to intranasal administration of a cholera toxin A2/B (CTA2/B) chimera containing IsdA. Plasmids were constructed to express the IsdA-CTA2/B chimera and control proteins inEscherichia coli. Proper construction of the chimera was verified by SDS-PAGE, Western blotting, GM1 enzyme-linked immunosorbent assay (ELISA), and confocal microscopy. Groups of female BALB/c mice were mock immunized or immunized with IsdA-CTA2/B, IsdA mixed with CTA2/B, or IsdA alone, followed by one booster immunization at 10 days postpriming. Analysis of serum IgG and nasal, intestinal, and vaginal IgA suggested that mucosal immunization with IsdA-CTA2/B induces significant IsdA-specific humoral immunity. Functionalin vitroassays revealed that immune serum significantly blocks the adherence ofS. aureusto human epithelial cells. Splenocytes from mice immunized with IsdA-CTA2/B showed specific cellular proliferation and production of interleukin-4 (IL-4) afterin vitrostimulation. Immunization with IsdA-CTA2/B drove isotype switching to IgG1, indicative of a Th2-type response. Our results suggest that the immunogenicity of theS. aureusIsdA-CTA2/B chimera merits further investigation as a potential mucosal vaccine candidate.


2020 ◽  
Vol 177 (2) ◽  
pp. 334-346
Author(s):  
Nataliia Kovalchuk ◽  
Qing-Yu Zhang ◽  
Laura Van Winkle ◽  
Xinxin Ding

Abstract Previous studies have established that cytochrome P450 enzymes (CYPs) in both liver and lung are capable of bioactivating naphthalene (NA), an omnipresent air pollutant and possible human carcinogen, in vitro and in vivo. The aim of this study was to examine the specific contribution of pulmonary CYPs in airway epithelial cells to NA-induced airway toxicity. We used a lung-Cpr-null mouse model, which undergoes doxycycline-induced, Cre-mediated deletion of the Cpr (a redox partner of all microsomal CYPs) gene specifically in airway epithelial cells. In 2-month-old lung-Cpr-null mice, Cpr deletion occurred in 75%–82% of epithelial cells of conducting airways. The extent of NA-induced acute lung toxicity (as indicated by total protein concentration and lactate dehydrogenase activity in bronchoalveolar lavage fluid collected at 24-h after initiation of a 4-h, nose-only, 10-ppm NA inhalation exposure) was substantially lower (by 37%–39%) in lung-Cpr-null mice, compared with control littermates. Moreover, the extent of cellular proliferation (as indicated by 5-bromo-2′-deoxyuridine incorporation) was noticeably lower in both proximal and distal airways (by 59% and 65%, respectively) of NA-treated lung-Cpr-null mice, compared with control littermates, at 2-day post-NA inhalation exposure. A similar genotype-related difference in the extent of postexposure cell proliferation was also observed in mice exposed to NA via intraperitoneal injection at 200 mg/kg. These results directly validate the hypothesis that microsomal CYP enzymes in airway epithelial cells play a large role in causing injury to airway epithelia following exposure to NA via either inhalation or intraperitoneal route.


1997 ◽  
Vol 152 (2) ◽  
pp. 283-290 ◽  
Author(s):  
L A Salamonsen ◽  
R J Young ◽  
S Garcia ◽  
J K Findlay

Abstract Endothelin-1 (ET-1) is present in ovine endometrium, primarily in epithelial cells, and increases around the time of implantation. We examined the cell type expressing ET-binding sites in vitro and whether ET-1 has mitogenic actions in the endometrium, alone or in synergy with other growth factors. Purified epithelial and stromal cells were prepared from luteal-phase endometrium. Specific receptors were demonstrated by binding of 125I-ET-1 and proliferative effects of ET-1 and/or other growth factors determined by uptake of [3H]thymidine by cells in serum-free culture. 125I-ET-1 bound to both epithelial (2516 ± 820 c.p.m./well) and stromal (6368 ± 1350 c.p.m./well) cells and was displaced by ET-1 (1 μmol l−1). There were no proliferative effects of ET on epithelial cells. ET-1 (10 nmol l−1) stimulated uptake of [3H]thymidine by stromal cells under serum-free conditions in 13/20 individual cell preparations, to 149 ± 13% of control (untreated=100%) with dose-dependence between the range of 1 to 100 nmol l−1. Stimulation by fetal calf serum was to 377 ± 126% of control. The effects on proliferation by other growth factors (dose; % of control ± s.e.m., number of positives/total number of cell preparations) were: IGF-I (13 nmol l−1; 182 ± 14, 4/4), epidermal growth factor (EGF; 4·8 nmol l−1; 132 ± 5%, 7/7), platelet-derived growth factor-BB (0·4 nmol l−1; 146 ± 3, 2/2) and leukaemia inhibitory factor (0·4 nmol l−1; 110 ± 2, 3/3). All stimulations except that of EGF were significant and dose-responsive but only insulin was additive with ET (350 ± 35, 5/5). ET-1 also stimulated expression of the the AP-1 cis element c-jun, this being maximal at 60 min of exposure to mitogen. ET-1, along with other growth factors has a likely paracrine role in cellular proliferation in the endometrium, possibly in association with blastocyst implantation. Journal of Endocrinology (1997) 152, 283–290


1997 ◽  
Vol 45 (2) ◽  
pp. 315-319 ◽  
Author(s):  
Jimmy Van heusden ◽  
Paul de Jong ◽  
Frans Ramaekers ◽  
Hélène Bruwiere ◽  
Marcel Borgers ◽  
...  

Immunocytochemical detection of bromodeoxyuridine (BrdU) labeling can be hampered by low BrdU incorporation levels. We describe here an amplification method for weak BrdU immunosignals. The tyramide signal amplification method based on catalyzed reporter deposition (CARD) uses fluorescein-labeled tyramide as a substrate for horseradish peroxidase. The enzyme catalyzes the formation of highly reactive tyramide radicals with a very short half-life, resulting in the binding of fluorescein-conjugated tyramide only at the site of the enzymatic reaction. MCF-7 cells were grown in vitro in medium containing charcoal-stripped fetal bovine serum supplemented by growth factors. Under these culture conditions, the BrdU immunosignal was hard to detect but could be enhanced specifically by the tyramide signal amplification system, resulting in clear-cut differences between BrdU-negative and BrdU-positive cells. This enabled rapid and objective quantification of the BrdU labeling index without the risk of underestimating the number of cells in S-phase. Therefore, this amplification of BrdU immunosignals might also prove valuable for in vivo cancer prognosis, cell kinetics studies, and computer-assisted image analyses.


Sign in / Sign up

Export Citation Format

Share Document