scholarly journals Zinc partitions IGFs from soluble IGF binding proteins (IGFBP)-5, but not soluble IGFBP-4, to myoblast IGF type 1 receptors

2004 ◽  
Vol 180 (2) ◽  
pp. 227-246 ◽  
Author(s):  
RH McCusker ◽  
J Novakofski

Zinc (Zn(2+)), a multifunctional micronutrient, was recently shown to lower the affinity of cell-associated insulin-like growth factor (IGF) binding protein (IGFBP)-3 and IGFBP-5 for both IGF-I and IGF-II, but to increase the affinity of the cell surface type 1 IGF receptor (IGF-1R) for the same two ligands. However, there is a need for data concerning the effects of Zn(2+) on soluble IGFBPs and the type 2 IGF receptor (IGF-2R). In the current work, we demonstrate that Zn(2+) affects the affinity of IGFBP-5 secreted by myoblasts but not IGFBP-4. Zn(2+), at physiological levels, depressed binding of both IGF-I and IGF-II to IGFBP-5, affecting (125)I-IGF-I more than (125)I-IGF-II. Both (125)I-IGF-I and (125)I-IGF-II bound to high and low affinity sites on IGFBP-5. Zn(2+) converted the high affinity binding sites of IGFBP-5 into low affinity binding sites. An IGF-I analog, (125)I-R(3)-IGF-I, did not bind to the soluble murine IGFBP-5. Zn(2+) also decreased the affinity of the IGF-2R on L6 myoblasts. In contrast, Zn(2+) increased IGF-I, IGF-II and R(3)-IGF-I binding to the IGF-1R by increasing ligand binding affinity on both P(2)A(2a)-LISN and L6 myoblasts. Soluble IGFBP-5 and IGFBP-4 depressed the binding of (125)I-IGF-I and (125)I-IGF-II to the IGF-1R, but did not affect binding of (125)I-R(3)-IGF-I. By depressing the association of the IGFs with soluble IGFBP-5, Zn(2+) partitioned (125)I-IGF-I and (125)I-IGF-II from soluble IGFBP-5 onto cell surface IGF-1Rs. This effect is not seen when soluble L6-derived IGFBP-4 is present in extracellular fluids. We introduce a novel mechanism by which the trace micronutrient Zn(2+) may alter IGF distribution, i.e. Zn(2+) acts to increase IGF-1R binding at the expense of IGF binding to soluble IGFBP-5 and the IGF-2R.

2000 ◽  
Vol 165 (1) ◽  
pp. 123-131 ◽  
Author(s):  
A Puglianiello ◽  
D Germani ◽  
P Rossi ◽  
S Cianfarani

SH-SY5Y human neuroblastoma cells express IGF receptors, IGFs and IGF binding proteins (IGFBPs), and provide a model for studying the role of the IGF system in human neuronal development. We investigated the effect of IGF-I and des(1-3)IGF-I on the motility of SH-SY5Y cells by a cell migration assay based on the assessment of the number of cells which migrated across 8 microm pore size membranes and around an agarose drop. IGF-I and des(1-3)IGF-I stimulated neuroblast chemotaxis in a dose-dependent manner. Treatment of cells with these agents for 24 h resulted in a significant increase (IGF-I by 70% and des(1-3)IGF-I by 90%; P<0. 0001) in cell motility relative to control conditions. Addition of monoclonal antibody against type 1 IGF receptor (alpha-IR3), significantly (P<0.05) reduced the cell motility induced by IGF-I (by 30%) and des(1-3)IGF-I (by 70%). Wortmannin, a specific inhibitor of phosphatidylinositol (PI)-3 kinase intracellular signalling, also reduced the IGF-stimulated cell migration (by over 40%, P<0.01), indicating a key role of the PI-3 kinase pathway in mediating the IGF effect on neuroblast migration. Finally, cell treatment with plasminogen (PLG) markedly enhanced neuroblast migration (by over 200%, P<0.01), whereas incubation with the PLG inhibitor 4-(2-aminoethyl)-benzenesulphonyl fluoride reduced cell motility (by 80%, P<0.01), thus suggesting an involvement of PLG-dependent IGFBP proteolysis in the regulation of neuroblast motility. In conclusion, IGF-I is a potent stimulator of neuroblast migration through the activation of type 1 IGF receptor and the PI-3 kinase intracellular pathway. IGFBPs and the plasmin system seem to play a role in cell motility, although the nature and the extent of their involvement has yet to be elucidated.


2001 ◽  
Vol 86 (8) ◽  
pp. 3686-3691 ◽  
Author(s):  
E. C. Crowne ◽  
J. S. Samra ◽  
T. Cheetham ◽  
C. L. Acerini ◽  
A. Watts ◽  
...  

To determine the role of IGF-binding proteins in mediating the direct effects of recombinant human IGF-I on insulin requirements in type 1(insulin-dependent) diabetes mellitus, overnight changes in IGF-I, IGF-II, and IGF-binding protein-1, -2, and -3, collected under euglycemic conditions, were compared in nine subjects after double blind, randomized, sc administration of recombinant human IGF-I (40μ g/kg) or placebo at 1800 h. On both nights a somatostatin analog infusion (300 ng/kg·h) suppressed endogenous GH production, and three timed discrete GH pulses (total, 0.029 IU/kg·night) ensured identical GH levels. After recombinant human IGF-I administration, IGF-I levels and the IGF-I/IGF-binding protein-3 ratio increased [mean ± sem:IGF-I, 401 ± 22 ng/ml; placebo, 256 ± 20 ng/ml (P = 0.0002); IGF-I, 0.108 ± 0.006; placebo, 0.074 ± 0.004 (P = 0.0003), respectively], and insulin requirements decreased (IGF-I, 0.12 ± 0.03; placebo, 0.23 ± 0.03 U/kg·min; P = 0.008). The normal within-individual inverse relationships between insulin and IGF-binding protein-1 levels were observed (lag time 2 h: r =− 0.34; P &lt; 0.01). Yet despite reduced free insulin levels (8.5 ± 1.5; placebo, 12.2 ± 1.2 mU/liter; P = 0.03), IGF-binding protein-1 levels were reduced after recombinant human IGF-I administration (53.7 ± 6.8; placebo, 82.2 ± 11.8 ng/ml; P = 0.008). The largest reductions in free insulin levels after recombinant human IGF-I and thus putative improvement in insulin sensitivity occurred in subjects with the smallest increase in the plasma IGF-I/IGF-binding protein-3 ratio (r = 0.7; P = 0.03). Taken together, these data are consistent with the hypothesis that transcapillary movement of IGF-I (perhaps mediated by IGF-binding protein-1), out of the circulation facilitates altered insulin sensitivity. These data have important implications for risk-benefit assessment of recombinant human IGF-I therapy in type 1 diabetes mellitus.


1995 ◽  
Vol 15 (2) ◽  
pp. 105-115 ◽  
Author(s):  
D C Batchelor ◽  
A-M Hutchins ◽  
M Klempt ◽  
S J M Skinner

ABSTRACT The insulin-like growth factors (IGF-I and IGF-II), their receptors and binding proteins (IGFBPs) are endogenously expressed in a number of tissues including the lung during fetal and neonatal development. This endogenous autocrine/paracrine IGF 'system', together with endocrine sources, contributes to the regulation of lung cell proliferation. We investigated the expression of the mRNAs encoding IGF-I, IGF-II, the type 1 IGF receptor (IGF-T1R) and two IGF-binding proteins (IGFBP-2 and IGFBP-4) in rat lung during the perinatum. These were compared in lung with surfactant apoprotein A (Sp-A) mRNA levels. mRNA in extracts of fetal tissues collected between day 17 of gestation (17f) and day 9 after birth (9d) was estimated by Northern blot or RNase protection analysis. At day 20 of gestation IGF-I, IGF-T1R and IGFBP-4 mRNA levels were higher in lung than liver (all P<0·01), whereas IGF-II and IGFBP-2 mRNA levels were higher in liver than lung (each P<0·02). The expression of IGF-I, IGFBP-2 and IGFBP-4 in lung was high before birth (days 17–20f) but decreased to low levels at days 21f, 22f or at birth (1d) but increased in the neonatal lung. IGF-II expression in lung was high at 17f but decreased before birth and remained low after birth. The IGF-T1R was expressed at moderate levels before birth, decreased before birth but peaked at days 2–5 after birth. The decrease in expression of these growth regulators before birth was matched by an increase in Sp-A expression which was clearly seen at day 20f, peaked at 1d and then was maintained at high levels after birth. Primary cell cultures of 18f lung epithelia express IGFBP-2 while fibroblasts from the same animals express only IGFBP-4. Cells grown from 22f lung tissue express IGFBP-2 and IGFBP-4 at lower levels, behaving in vitro as they do in vivo. The contrasting levels of expression of different components of the IGF system in the fetal lung and liver indicate organ-specific regulation. IGFBP-2 and IGFBP-4 expression in different cell types within lung but with similar temporal changes suggests cell-specific regulation, perhaps by a common agent. The patterns of expression of IGF-I, IGF-T1R, IGFBP-2 and IGFBP-4, but not IGF-II, in developing lung correspond to previously described phasic changes in lung cell proliferation rates. The nadir in expression of these four major components of the lung IGF system occurs in the saccular phase when the lung begins to differentiate, probably under the influence of certain endocrine agents.


1996 ◽  
Vol 149 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Z Upton ◽  
H Webb ◽  
F M Tomas ◽  
F J Ballard ◽  
G L Francis

Abstract While numerous researchers have used rat models to investigate the in vivo actions of IGF-I, interpretation of the results in terms of true concentrations of rat IGF-I (rIGF-I) in plasma has been hampered by the absence of homologous reference standards. In order to overcome this we have produced recombinant rIGF-I (rrIGF-I) from Escherichia coli using procedures similar to those we have previously described for the production of other recombinant IGFs. The rrIGF-I is indistinguishable from serum-derived rIGF-I when characterized in a number of in vitro assays including ability to stimulate protein synthesis and inhibit protein degradation in cultured rat cells, as well as in interactions with the rat type-1 IGF receptor and with rat IGF-binding proteins. Moreover, both the serum-derived and the recombinant rat proteins are similar to recombinant human IGF-I (rhIGF-I) in these assays. However, differences between the human and rat IGFs are apparent when tested in immunoassays using some antibodies raised against rhIGF-I. Furthermore, the differences between rhIGF-I and rrIGF-I are even greater when rhIGF-I is used as the competing radiolabel in these assays, a situation that can lead to a two- to threefold underestimation of the actual concentration of IGF-I in rat plasma. These results indicate that, while immunoassays employing antibodies raised against rhIGF-I and rhIGF-I reference standards reliably indicate trends in IGF-I concentrations in rat plasma, the true amounts of rIGF-I present can only be assured in an assay using homologous tracer and reference peptides. Journal of Endocrinology (1996) 149, 379–387


Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 620-626 ◽  
Author(s):  
John L. Fowlkes ◽  
Delila M. Serra ◽  
R. Clay Bunn ◽  
Kathryn M. Thrailkill ◽  
Jan J. Enghild ◽  
...  

Abstract IGF-I and IGF-II play important roles in growth and development via interactions with cell-surface receptors; however, in nature, IGFs are sequestered by at least six soluble, high-affinity IGF-binding proteins (IGFBPs), namely IGFBPs 1–6. Herein, we demonstrate that the stromal cell-derived extracellular matrix-degrading metalloproteinase stromelysin 1 (matrix metalloproteinase 3) disrupts IGF/IGFBP-3 complexes and liberates free, intact IGFs, leading to phosphorylation of cell surface type 1 IGF receptors and cellular proliferation. Tissue inhibitor of metalloproteinases (TIMP-1) or an antibody to the type 1 IGF receptor mitigates IGF-mediated cellular proliferation. Thus, these studies suggest that matrix metalloproteinases, beyond their effects on extracellular matrix turnover, regulate cellular proliferation by modulating the bioavailability of IGFs, an event critical for such diverse phenomena as embryo development, morphogenesis, angiogenesis, and tumorigenesis.


1989 ◽  
Vol 264 (19) ◽  
pp. 11004-11008 ◽  
Author(s):  
M L Bayne ◽  
J Applebaum ◽  
D Underwood ◽  
G G Chicchi ◽  
B G Green ◽  
...  

1995 ◽  
Vol 308 (3) ◽  
pp. 865-871 ◽  
Author(s):  
S J Milner ◽  
G L Francis ◽  
J C Wallace ◽  
B A Magee ◽  
F J Ballard

The oxidative folding of human insulin-like growth factor (IGF)-I yields two major disulphide folding isomers. In the present study, B-domain analogues of IGF-I were used to investigate the effect of mutations on the folding reaction and to investigate the functional implications of misfolding. The analogues used were substitutions of the native Glu3 by Gly or Arg, or the native Glu9 by Lys. IGF-I and these analogues were also prepared attached to a hydrophobic 13-amino-acid N-terminal extension, Met-Phe-Pro-Ala-Met-Pro-Leu-Ser-Ser-Leu-Phe-Val-Asn, referred to as ‘Long-IGF-I’ analogues. Each IGF was fully reduced and refolded to yield native and misfolded isomers, which were subsequently purified for biological characterization. Analysis of the folding reaction at equilibrium revealed a distribution of folding isomers characteristic for each peptide. The yield of the native disulphide folding isomer was increased for the Glu3 substitutions, but not for the Glu9 substitution. The main alternative folding isomer was present in the IGF-I analogues in reduced proportions. Except for [Gly3]IGF-I the N-terminal extension increased the yield of the native isomer which was maximal for the analogue Long-[Arg3]IGF-I. A folding intermediate for the latter analogue was isolated and partially characterized. The biological assays showed that all the main alternative isomers bound poorly to IGF-binding proteins (IGFBPs) secreted by L6 myoblasts. Moreover, these isomers bound to the type 1 IGF receptor with 0.5-25% the affinity of the native isomer. In a rat L6 myoblast protein-synthesis assay, the observed biological activity of the native and main alternative isomers was explained by their modified IGFBP- and receptor-binding properties. We propose that the N-terminal extension imparts a steric constraint at a crucial point in folding, thus allowing native disulphide bonds to form efficiently.


1995 ◽  
Vol 146 (2) ◽  
pp. 247-253 ◽  
Author(s):  
M A Conlon ◽  
F M Tomas ◽  
P C Owens ◽  
J C Wallace ◽  
G S Howarth ◽  
...  

Abstract We have tested whether an animal with substantial amounts of both IGF-I and IGF-II in circulation, such as the guinea pig, would respond to chronic IGF infusion in the same manner as the adult rat, which has negligible amounts of IGF-II in blood. Female guinea pigs of 350 g body weight were continuously infused for 7 days with recombinant guinea pig IGF-I or -II (120 or 360 μg/day) or long R3 IGF-I (LR3IGF-I) (120 μg/day), an analogue which has much reduced affinities for IGF binding proteins. IGF-I or IGF-II infusion led to substantial increases in plasma IGF-I or IGF-II respectively in comparison with vehicle-infused animals. Nevertheless, body weight gain, feed intake, feed conversion efficiency and carcass composition were not significantly affected by any treatment (significance was deemed to be P<0·05). Amongst the tissues examined only the fractional weight (g/kg body weight) of the adrenals was increased, and that only by the higher dose (360 μg/day) of IGF-I. However, the fractional weight of adrenals, gut, kidneys and spleen were significantly increased by LR3IGF-I, but again overall growth was not stimulated. A possible explanation for the lack of IGF-I effects is that total circulating IGF concentrations were not increased by these treatments. IGF-II significantly raised total IGF concentrations at the higher dose only. Plasma IGF-I was reduced by IGF-II infusion, as was plasma IGF-II by IGF-I infusion. LR3IGF-I treatment lowered both plasma IGF-I and IGF-II concentrations, a response probably related to a reduction in total plasma IGF binding protein (IGFBP), especially IGFBP-3, concentrations. We conclude that although the guinea pig is responsive to IGF treatment, the effects differ markedly from those elicited in rats. Journal of Endocrinology (1995) 146, 247–253


1996 ◽  
Vol 134 (4) ◽  
pp. 474-480 ◽  
Author(s):  
Sylvie Babajko ◽  
Michel Binoux

Babajko S, Binoux M. Modulation by retinoic acid of insulin-like growth factor (IGF) and IGF binding protein expression in human SK-N-SH neuroblastoma cells. Eur J Endocrinol 1996;134:474–80. ISSN 0804–4643 Growth in neuroblastoma cells is regulated by insulin-like growth factors (IGFs) whose action is modulated by IGF binding proteins (IGFBPs). In this study, SK-N-SH neuroblastoma cells were shown to produce IGF-II, IGFBP-2, IGFBP-4 and small quantities of IGFBP-6. We have studied the effects of a natural morphogen, retinoic acid (RA), on growth and IGFBP expression in these cells. In all experiments, cells were cultured in serum-free medium and treated with 1 μmol/l RA for 12 h. Cell number increased by almost 50% during the first 24 h after the beginning of treatment. This stimulation was inhibited by 80% or more in the presence of the anti-type 1 IGF receptor antibody α-IR3 and anti-IGF-II antibody. The IGF-II concentrations in the culture media, measured after acidic gel filtration, increased about 1.5-fold and Northern blotting showed a concomitant increase in IGF-II mRNA levels. The mitogenic effect of RA therefore reflects its stimulation of IGF-II production. The availability of IGF-II to the cells may also be enhanced because of the proteolysis of IGFBP-2 to which it is bound. After this initial phase, proliferation ceased despite continued IGF-II production between 24 and 72 h. Both IGFBP-2 and IGFBP-4 production decreased, whereas that of IGFBP-6 increased. These changes appeared both in the protein quantities and in their mRNAs. Insulin-like growth factor binding protein 6 has a strong affinity for IGF-II, 5–10 times that of IGFBP-2 and at least 10 times that of the type 1 IGF receptor, and the arrested proliferation may result, at least in part, from sequestration by IGFBP-6 of the IGF-II secreted. Sylvie Babajko, INSERM U142, Hôpital Saint Antoine, 184 rue du Faubourg, St Antoine, 75571 Paris Cedex 12, France


Sign in / Sign up

Export Citation Format

Share Document