Binary alkali activated systems obtained by the valorisation of calcined kaolin sludge and bottom ash

2021 ◽  
pp. 1-29
Author(s):  
Márlon A. Longhi ◽  
Erich D. Rodríguez ◽  
Susan A. Bernal ◽  
John L. Provis ◽  
Ana Paula Kirchheim
2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 855
Author(s):  
Qi Sun ◽  
Xueda Wei ◽  
Tianlong Li ◽  
Lu Zhang

A new type of cemented paste backfill (CPB) was prepared by using the bottom ash (BA) from a thermal power plant as an aggregate, alkali-activated slag as a binder, and an air-entraining agent as an admixture. Based on the central composite design (CCD) response surface method, the mix ratio was optimized, and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) was performed on the optimal mix ratio. ImageJ software was utilized to determine the porosity of the experimental samples at various curing ages. The results indicate that the optimal mix ratio of the aggregate-binder ratio is 3.28, the alkali dosage is 3%, the solid content is 67.44%, and the air-entraining agent dosage is 0.1%. As the curing age increases, the porosity of CPB gradually decreases. A calcium aluminosilicate hydrate (C-A-S-H) gel is the main hydration product of alkali-activated slag. At the beginning of the hydration reaction, the slag gradually dissolves, and the C-A-S-H product binds the BA together. At 14 d, complete calcium hydroxide (CH) crystals appeared in the hydration product. Finally, the degree of C-A-S-H crystallization increased further to form a dense structure.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1927
Author(s):  
Lei Jin ◽  
Guodong Huang ◽  
Yongyu Li ◽  
Xingyu Zhang ◽  
Yongsheng Ji ◽  
...  

Setting time and mechanical properties are key metrics needed to assess the properties of municipal solid waste incineration (MSWI) bottom ash alkali-activated samples. This study investigated the solidification law, polymerization, and strength development mechanism in response to NaOH and liquid sodium silicate addition. Scanning electron microscopy and X-ray diffraction were used to identify the formation rules of polymerization products and the mechanism of the underlying polymerization reaction under different excitation conditions. The results identify a strongly alkaline environment as the key factor for the dissolution of active substances as well as for the formation of polymerization products. The self-condensation reaction of liquid sodium silicate in the supersaturated state (caused by the loss of free water) is the major reason for the rapid coagulation of alkali-activated samples. The combination of both NaOH and liquid sodium silicate achieves the optimal effect, because they play a compatible coupling role.


2020 ◽  
Vol 10 (15) ◽  
pp. 5190
Author(s):  
Danutė Vaičiukynienė ◽  
Dalia Nizevičienė ◽  
Aras Kantautas ◽  
Vytautas Bocullo ◽  
Andrius Kielė

There is a growing interest in the development of new cementitious binders for building construction activities. In this study, biomass bottom ash (BBA) was used as aluminosilicate precursor and phosphogypsum (PG) was used as a calcium source. The mixtures of BBA and PG were activated with the sodium hydroxide solution or the mixture of sodium hydroxide solution and sodium silicate hydrate solution. Alkali activated binders were investigated using X-ray powder diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) test methods. The compressive strength of hardened paste and fine-grained concrete was also evaluated. After 28 days, the highest compressive strength reached 30.0 MPa—when the BBA was substituted with 15% PG and activated with NaOH solution—which is 14 MPa more than control sample. In addition, BBA fine-grained concrete samples based on BBA with 15% PG substitute activated with NaOH/Na2SiO3 solution showed higher compressive strength compered to when NaOH activator was used −15.4 MPa and 12.9 MPa respectfully. The NaOH/Na2SiO3 activator solution resulted reduced open porosity, so potentially the fine-grained concrete resistance to freeze and thaw increased.


2008 ◽  
Vol 28 (10) ◽  
pp. 1955-1962 ◽  
Author(s):  
X.C. Qiao ◽  
M. Tyrer ◽  
C.S. Poon ◽  
C.R. Cheeseman

Sign in / Sign up

Export Citation Format

Share Document