scholarly journals Alkali Activated Paste and Concrete Based on of Biomass Bottom Ash with Phosphogypsum

2020 ◽  
Vol 10 (15) ◽  
pp. 5190
Author(s):  
Danutė Vaičiukynienė ◽  
Dalia Nizevičienė ◽  
Aras Kantautas ◽  
Vytautas Bocullo ◽  
Andrius Kielė

There is a growing interest in the development of new cementitious binders for building construction activities. In this study, biomass bottom ash (BBA) was used as aluminosilicate precursor and phosphogypsum (PG) was used as a calcium source. The mixtures of BBA and PG were activated with the sodium hydroxide solution or the mixture of sodium hydroxide solution and sodium silicate hydrate solution. Alkali activated binders were investigated using X-ray powder diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM) test methods. The compressive strength of hardened paste and fine-grained concrete was also evaluated. After 28 days, the highest compressive strength reached 30.0 MPa—when the BBA was substituted with 15% PG and activated with NaOH solution—which is 14 MPa more than control sample. In addition, BBA fine-grained concrete samples based on BBA with 15% PG substitute activated with NaOH/Na2SiO3 solution showed higher compressive strength compered to when NaOH activator was used −15.4 MPa and 12.9 MPa respectfully. The NaOH/Na2SiO3 activator solution resulted reduced open porosity, so potentially the fine-grained concrete resistance to freeze and thaw increased.

2019 ◽  
Vol 961 ◽  
pp. 45-50 ◽  
Author(s):  
Hoc Thang Nguyen

Inorganic polymer materials known as geopolymer-based materials are always interesting topics for researchers. Geopolymer is environmentally friendly material which has been potential applications for many different fields such as technical materials, building materials, insolation or refractories, and others. This study used ash of brickyard (AB) as a raw material for geopolymerization process to develop novel materials with high porosity. AB is industrial waste of the brick factories that need to be managed to reduce their negative impact to the environment. AB contains high alumino-silicate resources were mixed with sodium hydroxide solution for 10 minutes to obtain the geopolymer pastes. Sodium hydroxide solution was used as an alkaline activator to form geopolymer paste. The geopolymer paste was filled into 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room temperature for 28 days. These products were then tested for compressive strength, volumetric weight, and water absorption. Results indicated that the material can be considered lightweight with a compressive strength at 28 days that are in the range of 8.1 to 15.4 MPa, volumetric weight around 600kg/m3 and water absorption is under 210.65 kg/m3. The properties of geopolymer products were also determined by analytical techniques that included mineral composition by X Ray Diffraction (XRD) and microstructure by scanning electron microscope (SEM).


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Subhash V. Patankar ◽  
Yuwaraj M. Ghugal ◽  
Sanjay S. Jamkar

Geopolymer concrete/mortar is the new development in the field of building constructions in which cement is totally replaced by pozzolanic material like fly ash and activated by alkaline solution. This paper presented the effect of concentration of sodium hydroxide, temperature, and duration of oven heating on compressive strength of fly ash-based geopolymer mortar. Sodium silicate solution containing Na2O of 16.45%, SiO2 of 34.35%, and H2O of 49.20% and sodium hydroxide solution of 2.91, 5.60, 8.10, 11.01, 13.11, and 15.08. Moles concentrations were used as alkaline activators. Geopolymer mortar mixes were prepared by considering solution-to-fly ash ratio of 0.35, 0.40, and 0.45. The temperature of oven curing was maintained at 40, 60, 90, and 120°C each for a heating period of 24 hours and tested for compressive strength at the age of 3 days as test period after specified degree of heating. Test results show that the workability and compressive strength both increase with increase in concentration of sodium hydroxide solution for all solution-to-fly ash ratios. Degree of heating also plays vital role in accelerating the strength; however there is no large change in compressive strength beyond test period of three days after specified period of oven heating.


2018 ◽  
Vol 877 ◽  
pp. 193-199 ◽  
Author(s):  
Suman Saha ◽  
C. Rajasekaran

Production of Ordinary Portland Cement (OPC) requires huge quantity of natural resources and energy and it releases large amount of carbon - di - oxide to the environment. Therefore, enormous studies have been carried out throughout the world to establish geopolymer as an alternative binder material for the replacement of OPC to protect the environment. This study intends to explore the effects of alkaline solution on the properties of geopolymer produced with ground granulated blast furnace slag. Properties such as Standard consistency, setting time of slag based geopolymer paste has been determined using Vicat’s apparatus (according to the guidelines given by Indian Standards for OPC). In order to determine the effects of alkaline solution on the properties of geopolymers, the concentration of sodium hydroxide solution has been varied from 6M to 16M and the ratio of sodium silicate solution to sodium hydroxide solution is also varied from 1.0 to 2.0. Results indicate higher standard consistency and significant less setting time for slag based geopolymer paste than that of OPC paste. Compressive strength of the geopolymer paste and mortar cube samples, cured in ambient conditions till the day of testing, is increasing with the increase of the concentration of sodium hydroxide solution. Highest compressive strength is obtained for the samples prepared with alkaline solution having the ratio of sodium silicate solution to sodium hydroxide solution as 1.5. But when the concentration of sodium hydroxide solution is beyond 14M, decreasing trend in compressive strength is observed.


2011 ◽  
Vol 339 ◽  
pp. 452-457 ◽  
Author(s):  
Mohd Azreen Mohd Ariffin ◽  
Mohd Warid Hussin ◽  
Muhammad Aamer Rafique Bhutta

Geopolymer concrete is a type of amorphous alumino-silicate cementitious material. Geopolymer can be polymerized by polycondensation reaction of geopolymeric precursor and alkali polysilicates. Compared to conventional cement concrete, the production of geopolymer concrete has a relative higher strength, excellent volume stability and better durability. This paper presents the mix design and compressive strength of geopolymer concrete manufactured from the blend of palm oil fuel ash (POFA) and pulverized fuel ash (PFA) as full replacement of cement with a combination of sodium silicate and sodium hydroxide solution used as alkaline liquid. The density and strength of the geopolymer concrete with various PFA: POFA ratios of 0:100, 30:70, 50:50 and 70:30 together with sodium silicate to sodium hydroxide solution by mass at 2.5 and 1.0, are investigated. The concentrations of alkaline solution used are 14 Molar and 8 Molar. Tests were carried out on 100x100x100 mm cube geopolymer concrete specimens. Specimens were cured at room temperature and heat curing at 60°C and 90°C for 24 hours, respectively. The effects of mass ratios of PFA: POFA, the alkaline solution to PFA: POFA, ratio and concentration of alkaline solution on fresh and hardened properties of concrete are examined. The results revealed that as PFA: POFA mass ratio increased the workability and compressive strength of geopolymer concrete are increased, the ratio and concentration of alkaline solution increased, the compressive strength of geopolymer concrete increases with regards to curing condition.


2010 ◽  
Vol 168-170 ◽  
pp. 2214-2218
Author(s):  
Xin Yuan Jiang ◽  
Jian Xin Zhao

Aminobenzenesulfonic-based superplasticizer is a kind of high range water reducer synthesized by sodium aminosulfonate, phenol and formaldehyde, as the expensive phenol and the bad workability of concrete added with it, so its application is limited. Bamboo tar is one of the byproducts from bamboo charcoal production, and for its complicated components it isn’t utilized effectively until now. Crude phenols extract was obtained from bamboo tar by using sodium hydroxide solution, and the synthesis of modified aminobenzenesulfonic-based superplasticizer by using crude phenols extract to substitute part of phenol was optimized, and the fluidity of cement paste, compressive strength and water-reducing rate of concrete added superplasticizers were also determined in this paper. The research results indicated that the fluidity of cement paste, concrete compressive strength during the same period, the water-reducing rate and the workability of concrete added with modified aminobenzenesulfonic-based superplasticizer synthesized by using crude phenols extract to substitute 10% phenol were better than that added with aminobenzenesulfonic -based superplasticizer synthesized by only phenol.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1829 ◽  
Author(s):  
Luís Tambara Júnior ◽  
Malik Cheriaf ◽  
Janaíde Rocha

This study investigated the reactivity properties of self-leveling hybrid alkali-activated cements, such as ordinary Portland cement (OPC) and its residual precursors, coal bottom ash (BA), and rice husk ash (RHA). Due to the relatively low reactivity of BA, binary mixes were produced with OPC using contents of 2.5–30% in the treated BA samples. Furthermore, ternary mixes were prepared in proportions of 25%, 50%, and 75% with RHA as a replacement material for the OPC (mix with 90%:10% BA:OPC). For all of the mixes the spreading behaviors were fixed to obtain a self-levelling mortar, and dimensional changes, such as curling and shrinkage, were performed. Mortars with 30% OPC reached a compressive strength of 33.5 MPa and flexural strength of 7.53 MPa. A scanning electron microscope (SEM) and X-ray powder diffraction (XRD) were used to indicate the formation of N-A-S-H and a (N,C)-A-S-H gel, similar to the gel with trace of calcium. The best performance was achieved when the binary mix produced 10% OPC. A hybrid mortar of OPS-BA presented 10 times lower susceptibility to curling than an OPC mortar. The results showed that both ashes reduced the shrinkage and curling phenomena.


2014 ◽  
Vol 92 ◽  
pp. 1-7
Author(s):  
Shinobu Hashimoto ◽  
Hayami Takeda ◽  
Tatsuya Machino ◽  
Haruka Kanie ◽  
Sawao Honda ◽  
...  

Geopolymers were fabricated from some Japanese volcanic ashes. 30 g of volcanic ash with 200μm in diameter was mixed with 10 ml of sodium hydroxide solution with various concentrations to form slurry which became geopolymer after curing. When 8.5~11.5 mol/L of sodium hydroxide solution was used, the compressive strength of the resultant geopolymers reached to 25-35MPa. However, when the volcanic ash with high silica content was used, the compressive strength of the geopolymer was under 20 MPa. Furthermore, the addition of sodium silicate hydrate into starting slurry which was consisted of volcanic ash and sodium silicate solution had not effected on the compressive strength of geopolymer. In contrast, the compressive strength of the geopolymer decreased to 30 % of compressive strength compared to that of original geopolymer after water immersion for 3 days. However, crushing treatment of the volcanic ash contributed to retain the compressive strength. Actually, when 10μm of volcanic ash was used to fabricate geopolymer, the compressive strength improved to 70% compared to that of original geopolymer.


2018 ◽  
Vol 147 ◽  
pp. 01004 ◽  
Author(s):  
Herwani ◽  
Ivindra Pane ◽  
Iswandi Imran ◽  
Bambang Budiono

Geopolymer concrete is a new material made by activating the raw materials which contain many elements of silica and alumina. Compressive strength of geopolymer concrete produced was influenced by the concentration of the activator solution. This paper presents an experimental investigation into fly ash-based geopolymer concrete. Research objective was to investigate the effects of alkaline activator solution (AAS) molarity on compressive strength of geopolymer concrete. Variable of the test were a solution to sodium hydroxide was chosen as the activator solution. Concentration of sodium hydroxide solution used was 10 M, 12 M and 14 M with ambient curing. The specimen is made of concrete cylinder with diameter 10 cm and height 20 cm as many as 9 pieces each variable. Compressive strength tests is performed when the concrete is 7, 14, and 28 days old. Results of the test are indicated that the increasing of sodium hydroxide (NaOH) solution concentration leads to improve the compressive strength of geopolymer concrete. The optimal compressive strength of geopolymer concrete was achieved at a concentration of sodium hydroxide solution (NaOH) of 12 M. Geopolymer concretes compressive strength only achieves around 50-60% of the planned.


Sign in / Sign up

Export Citation Format

Share Document