scholarly journals Macrophage Uptake of Necrotic Cell DNA Activates the AIM2 Inflammasome to Regulate a Proinflammatory Phenotype in CKD

2018 ◽  
Vol 29 (4) ◽  
pp. 1165-1181 ◽  
Author(s):  
Takanori Komada ◽  
Hyunjae Chung ◽  
Arthur Lau ◽  
Jaye M. Platnich ◽  
Paul L. Beck ◽  
...  

Nonmicrobial inflammation contributes to CKD progression and fibrosis. Absent in melanoma 2 (AIM2) is an inflammasome-forming receptor for double-stranded DNA. AIM2 is expressed in the kidney and activated mainly by macrophages. We investigated the potential pathogenic role of the AIM2 inflammasome in kidney disease. In kidneys from patients with diabetic or nondiabetic CKD, immunofluorescence showed AIM2 expression in glomeruli, tubules, and infiltrating leukocytes. In a mouse model of unilateral ureteral obstruction (UUO), Aim2 deficiency attenuated the renal injury, fibrosis, and inflammation observed in wild-type (WT) littermates. In bone marrow chimera studies, UUO induced substantially more tubular injury and IL-1β cleavage in Aim2−/− or WT mice that received WT bone marrow than in WT mice that received Aim2−/− bone marrow. Intravital microscopy of the kidney in LysM(gfp/gfp) mice 5–6 days after UUO demonstrated the significant recruitment of GFP+ proinflammatory macrophages that crawled along injured tubules, engulfed DNA from necrotic cells, and expressed active caspase-1. DNA uptake occurred in large vacuolar structures within recruited macrophages but not resident CX3CR1+ renal phagocytes. In vitro, macrophages that engulfed necrotic debris showed AIM2-dependent activation of caspase-1 and IL-1β, as well as the formation of AIM2+ ASC specks. ASC specks are a hallmark of inflammasome activation. Cotreatment with DNaseI attenuated the increase in IL-1β levels, confirming that DNA was the principal damage-associated molecular pattern in this process. Therefore, the activation of the AIM2 inflammasome by DNA from necrotic cells drives a proinflammatory phenotype that contributes to chronic injury in the kidney.

2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NOD-Like Receptor Protein 3 (NLRP3) inflammasome is a crucial component of an array of inflammatory conditions. It functions by boosting the secretion of pro-inflammatory cytokines: interleukin-1β (IL-1β) and interleukin-18 (IL-18). Previous studies have established the vital role of the acid sphingomyelinase (ASM)/ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. This study aimed to explore the effects and associated underlying mechanism of Cer-induced NLRP3 inflammasome activation.Methods: Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells was used as an in vitro inflammatory model. Western blotting and Real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were evaluated using ELISA kits. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content.Results: Imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity and inhibited Cer accumulation, which indicated ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activation and ceramide production. Further analysis showed that the exogenous C2-Cer treated J774A.1 cells induced the overexpression of TXNIP, NLRP3, caspase-1, IL-1β and IL-18. Besides, TXNIP siRNA or verapamil inhibited C2-Cer-induced TXNIP overexpression and NLRP3 inflammasome activation.Conclusion: This study demonstrated the involvement of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NLRP3 inflammasome serves as a crucial component in an array of inflammatory conditions by boosting the secretion of pro-inflammatory cytokines: IL-1β and IL-18. Hence, a thorough investigation of the underlying mechanism of NLRP3 activation could ascertain the requisite directionality to the ongoing studies, along with the identification of the novel drug targets for the management of inflammatory diseases. Previous studies have established the vital role of the Acid sphingomyelinase (ASM)/Ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. ASM mediates the ceramide production by sphingomyelin hydrolysis. Furthermore, the participation of the ASM/Cer in NLRP3 activation remains ambiguous. Methods: We employed lipopoysaccharide (LPS)/Adenosine Triphosphate (ATP)-induced activation of NLRP3 inflammasome in J774A.1 cells as an in vitro inflammatory model. Results: We observed that imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity & increased ceramide accumulation, which indicates ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: Thioredoxin interacting protein (TXNIP), NLRP3, Caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activity and ceramide production. Further examination showed that the exogenous C2-ceramide-treated J774A.1 cells induce the overexpression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18. Furthermore, verapamil inhibited C2-Ceramide mediated TXNIP overexpression and NLRP3 inflammasome activation. These findings infer that TXNIP overexpression leads to Cer mediated NLRP3 inflammasome activation. Conclusion: Our study validated the crucial role of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Xie ◽  
Long Fan ◽  
Liya Xiong ◽  
Peiyu Chen ◽  
Hongli Wang ◽  
...  

Abstract Background Helicobacter pylori (H. pylori) is a common pathogen in development of peptic ulcers with pyroptosis. Rabeprazole, a critical component of standard triple therapy, has been widely used as the first-line regimen for H. pylori infectious treatment. The aim of this study to explore the function of Rabeprazole on cell pyroptosis in vitro. Methods The clinical sample from patients diagnosed with or without H. pylori-infection were collected to analyze by Immunohistochemistry (IHC). Real-time quantitative PCR (qPCR), western blot (WB) and enzyme linked immunosorbent assay (Elisa) were performed to analyze the effect of Rabeprazole on cell pyroptosis, including LDH, IL-1β and IL-18. Results In this study, we showed that Rabeprazole regulated a phenomenon of cell pyroptosis as confirmed by lactate dehydrogenase (LDH) assay. Further results showed that Rabeprazole inhibited cell pyroptosis in gastric epithelial cells by alleviating GSDMD-executed pyroptosis, leading to decrease IL-1β and IL-18 mature and secretion, which is attributed to NLRP3 inflammasome activation inhibition. Further analysis showed that ASC, NLRP3 and Caspase-1, was significantly repressed in response to Rabeprazole stimulation, resulting in decreasing cleaved-caspase-1 expression. Most important, NLRP3 and GSDMD is significantly increased in gastric tissue of patients with H. pylori infection. Conclusion These findings revealed a critical role of Rabeprazole in cell pyroptosis in patients with H. pylori infection, suggesting that targeting cell pyroptosis is an alternative strategy in improving H. pylori treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2021 ◽  
Vol 5 (5) ◽  
pp. 1523-1534
Author(s):  
Johan Courjon ◽  
Océane Dufies ◽  
Alexandre Robert ◽  
Laurent Bailly ◽  
Cédric Torre ◽  
...  

Abstract Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient’s evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


2021 ◽  
Author(s):  
Chun Wang ◽  
Tong Yang ◽  
Jianqiu Xiao ◽  
Canxin Xu ◽  
Yael Alippe ◽  
...  

AbstractThe D301N NLRP3 mutation in mice (D303N in humans) causes severe multi-organ damage and early death driven by the constitutively activated NLRP3 (NLRP3ca) inflammasome. Triggered inflammasomes activate caspase-1 to process IL-1 family cytokines and gasdermin D (GSDMD), generating N-terminal fragments, which oligomerize within the plasma membrane to form pores, which cause inflammatory cell death (pyroptosis) and through which IL-1β and IL-18 are secreted. GSDMD activation is central to disease symptoms since spontaneous inflammation in Nlrp3ca;Gsdmd-/- mice is negligible. Unexpectedly, when Nlrp3ca;Gsdmd-/- mice were challenged with LPS or TNF-α, they secreted high amounts of IL-1β and IL-18, suggesting an alternative GSDMD-independent inflammatory pathway. Here we show that GSDMD deficient macrophages subjected to inflammatory stimuli activate caspase-8, -3 and GSDME-dependent cytokine release and pyroptosis. Caspase-8, -3 and GSDME also activated pyroptosis when NLRP3 was stimulated in caspase-1 deficient macrophages. Thus, a salvage caspase-8, -3-GSDME inflammatory pathway is activated following NLRP3 activation when the canonical NLRP3-caspase-1-GSDMD is blocked. Surprisingly, the active metabolite of the GSDMD-inhibitor disulfiram, inhibited not only GSDMD but also GSDME-mediated inflammation in vitro and suppressed severe inflammatory disease symptoms in Nlrp3ca mice, a model for severe neonatal multisystem inflammatory disease. Although disulfiram did not directly inhibit GSDME, it suppressed inflammasome activation in GSDMD-deficient cells. Thus, the combination of inflammatory signals and NLRP3ca overwhelmed the protection provided by GSDMD deficiency, rewiring signaling cascades through caspase-8, -3 and GSDME to propagate inflammation. This functional redundancy suggests that concomitant inhibition of GSDMD and GSDME may be necessary to suppress disease in inflammasomopathy patients.


2022 ◽  
pp. 1-10
Author(s):  
Patrick Wuchter ◽  
Anke Diehlmann ◽  
Harald Klüter

<b><i>Background:</i></b> The stem cell niche in human bone marrow provides scaffolds, cellular frameworks and essential soluble cues to support the stemness of hematopoietic stem and progenitor cells (HSPCs). To decipher this complex structure and the corresponding cellular interactions, a number of in vitro model systems have been developed. The cellular microenvironment is of key importance, and mesenchymal stromal cells (MSCs) represent one of the major cellular determinants of the niche. Regulation of the self-renewal and differentiation of HSPCs requires not only direct cellular contact and adhesion molecules, but also various cytokines and chemokines. The C-X-C chemokine receptor type 4/stromal cell-derived factor 1 axis plays a pivotal role in stem cell mobilization and homing. As we have learned in recent years, to realistically simulate the physiological in vivo situation, advanced model systems should be based on niche cells arranged in a three-dimensional (3D) structure. By providing a dynamic rather than static setup, microbioreactor systems offer a number of advantages. In addition, the role of low oxygen tension in the niche microenvironment and its impact on hematopoietic stem cells need to be taken into account and are discussed in this review. <b><i>Summary:</i></b> This review focuses on the role of MSCs as a part of the bone marrow niche, the interplay between MSCs and HSPCs and the most important regulatory factors that need to be considered when engineering artificial hematopoietic stem cell niche systems. <b><i>Conclusion:</i></b> Advanced 3D model systems using MSCs as niche cells and applying microbioreactor-based technology are capable of simulating the natural properties of the bone marrow niche more closely than ever before.


2021 ◽  
Author(s):  
Aijun Zhang ◽  
Youming Lu ◽  
Lei Yuan ◽  
Pengqi Zhang ◽  
Dongdong Zou ◽  
...  

Abstract Blood-brain barrier (BBB) dysfunction is presented during traumatic brain injury (TBI) and is dependent upon the activation of the NLRP3/Caspase-1 inflammasome pathway. MicroRNA (miRNA) was proved to inhibit signaling pathway activation by targeting gene expression and we predicated in the database that miR-29a targets to NLRP3. Herein, this study aims to define the regulating role of miR-29a in NLRP3 expression and NLRP3/Caspase-1 inflammasome activation in TBI-induced BBB dysfunction. Our results indicated that miR-29a-5p alleviates TBI-induced the increased permeability of endothelial cell and BBB via suppressing NLRP3 expression and NLRP3/Caspase-1 inflammasome activation, providing a promising strategy for relieving TBI via inhibiting NLRP3/Caspase-1 inflammasome activation.


2021 ◽  
Author(s):  
Lili Li ◽  
Xiaohui Zhu ◽  
Xingxing Chai ◽  
Xiaoyu Chen ◽  
Xiaohua Su ◽  
...  

Abstract Helicobacter pylori ( H. pylori ) is a major pathogenic factor for the development of gastric diseases including chronic gastritis and gastric cancer. Callicarpa nudiflora (CN), an air-dried leaves extract of Callicarpa nudiflora Hook. & Arn., has been found to exhibit a broad-spectrum antibacterial effect. In our study, we extracted the active ingredient from air-dried leaves of Callicarpa nudiflora, detected the effect of CN against H. pylori -infected GES-1 cells in vitro , and elucidated the underlying mechanism. GES-1 cells were cocultured with HPSS1 at MOI = 100:1 and treated with different concentrations of CN. Results indicated that CN not only significantly decreased cellular lactate dehydrogenase leakage, but also markedly attenuated H. pylori -induced cell apoptosis and ROS production in GSE-1 cells, therefore protecting gastric epithelial cells against injuries caused by H. pylori . CN also inhibited the secretions of inflammatory factors, such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and IL-8. Furthermore, CN remarkably decreased the expression levels of NLRP3, PYCARD, active Caspase-1. In conclusion, CN exhibited highly efficient protective effect against H. pylori -induced gastritis and cell damage; Mechanismly, CN suppressed H. pylori -triggered inflammatory response and pyroptosis through depressing ROS production and NLRP3 inflammasome activation via ROS/NLRP3/IL-1β signaling axis.


Sign in / Sign up

Export Citation Format

Share Document