scholarly journals Arginase activity is modulated by IL-4 and HOArg in nephritic glomeruli and mesangial cells

1998 ◽  
Vol 274 (3) ◽  
pp. F473-F480 ◽  
Author(s):  
Simon N. Waddington ◽  
Frederick W. K. Tam ◽  
H. Terence Cook ◽  
Victoria Cattell

Arginase shares a common substrate, l-arginine, with nitric oxide synthase (NOS). Both enzymes are active at inflammatory sites. To understand regulation of arginase and its relationship to nitric oxide (NO) production, we studied effects of N G-hydroxy-l-arginine (HOArg) and interleukin-4 (IL-4) on urea and[Formula: see text] synthesis by glomeruli during rat immune glomerulonephritis and compared these with macrophages and glomerular mesangial cells (MC). In nephritic glomeruli, elicited macrophages, and MC stimulated with IL-1 and adenosine 3′,5′-cyclic monophosphate agonists, increased arginase and induced NOS activity was found. Urea production was inhibited by HOArg and increased by IL-4. NO inhibition [ N G-monomethyl-l-arginine (l-NMMA)] increased arginase activity in nephritic glomeruli and macrophages but not MC.[Formula: see text] synthesis was inhibited byl-NMMA and IL-4. It was increased with HOArg under conditions of NO inhibition. In contrast, in normal glomeruli and basal MC, where there was no induced NO synthesis, IL-4 had no effect on arginase activity, whereas HOArg consistently reduced it in glomeruli only. Type II arginase (Arg II) mRNA was detected in normal glomeruli; nephritic glomeruli expressed both Arg I and Arg II mRNAs. This is the first demonstration of arginase modulation in glomeruli and MC and of the expression of arginase isoforms in glomeruli. The differential responses to two endogenous compounds generated by inflammation suggest this may be part of coordinated regulation of arginase and inducible NOS in immune injury, whereby arginase is inhibited during high-output NO production and stimulated with NO suppression. This, together with control of arginase and NOS isoforms, may be important in controlling the balance of inflammatory and repair mechanisms.

2002 ◽  
Vol 283 (6) ◽  
pp. L1192-L1199 ◽  
Author(s):  
Philip W. Shaul ◽  
Sam Afshar ◽  
Linda L. Gibson ◽  
Todd S. Sherman ◽  
Jay D. Kerecman ◽  
...  

Nitric oxide (NO), produced by NO synthase (NOS), plays a critical role in multiple processes in the lung during the perinatal period. To better understand the regulation of pulmonary NO production in the developing primate, we determined the cell specificity and developmental changes in NOS isoform expression and action in the lungs of third-trimester fetal baboons. Immunohistochemistry in lungs obtained at 175 days (d) of gestation (term = 185 d) revealed that all three NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), are primarily expressed in proximal airway epithelium. In proximal lung, there was a marked increase in total NOS enzymatic activity from 125 to 140 d gestation due to elevations in nNOS and eNOS, whereas iNOS expression and activity were minimal. Total NOS activity was constant from 140 to 175 d gestation, and during the latter stage (160–175 d gestation), a dramatic fall in nNOS and eNOS was replaced by a rise in iNOS. Studies done within 1 h of delivery at 125 or 140 d gestation revealed that the principal increase in NOS during the third trimester is associated with an elevation in exhaled NO levels, a decline in expiratory resistance, and greater pulmonary compliance. Thus, there are developmental increases in pulmonary NOS expression and NO production during the early third trimester in the primate that may enhance airway and parenchymal function in the immediate postnatal period.


2001 ◽  
Vol 281 (5) ◽  
pp. G1264-G1270 ◽  
Author(s):  
Flavia Mulè ◽  
Maria Giuliana Vannucchi ◽  
Letizia Corsani ◽  
Rosa Serio ◽  
Maria Simonetta Faussone-Pellegrini

The aim of the present study was to evaluate whether alterations in the distribution and/or function of nitric oxide synthase (NOS) could be involved in the development of the spontaneous mechanical tone observed in colon from dystrophic ( mdx) mice. By recording the intraluminal pressure of isolated colon from normal mice, we showed that N ω-nitro- l-arginine methyl ester (l-NAME) increased the tone, even in the presence of tetrodotoxin. The effect was prevented by l-arginine, nifedipine, or Ca2+-free solution. In colon from mdx mice, l-NAME was ineffective. Immunohistochemistry revealed that the presence and distribution of neuronal (nNOS), endothelial, and inducible NOS isoforms in smooth muscle cells and neurons of colon from mdx mice were the same as in controls. However, the expression of myogenic nNOS was markedly reduced in mdx mice. We conclude that there is a myogenic NOS in mouse colon that can tonically produce nitric oxide to limit influx of Ca2+ through L-type voltage-dependent channels and modulate the mechanical tone. This mechanism appears to be defective in mdx mice.


2000 ◽  
Vol 279 (6) ◽  
pp. F1092-F1100 ◽  
Author(s):  
Jörg Schwöbel ◽  
Tina Fischer ◽  
Bettina Lanz ◽  
Markus Mohaupt

Angiotensin II (ANG II) and nitric oxide (NO) have contrasting vascular effects, yet both sustain inflammatory responses. We investigated the impact of ANG II on lipopolysaccharide (LPS)/interferon-γ (IFN)-induced NO production in cultured rat mesangial cells (MCs). LPS/IFN-induced nitrite production, the inducible form of nitric oxide synthase (NOS-2) mRNA, and protein expression were dose dependently inhibited by ANG II on coincubation, which was abolished on ANG II type 2 (AT2) receptor blockade by PD-123319. Homology-based RT-PCR verified the presence of AT1A, AT1B, and AT2 receptors. To shift the AT receptor expression toward the type 1 receptor, two sets of experiments were performed: LPS/IFN preincubation for 24 h was followed by 8-h coincubation with ANG II; or during 24-h coincubation of LPS/IFN and ANG II, dexamethasone was added for the last 6-h period. Both led to an amplified overall expression of NOS-2 protein and NO production that was inhibitable by actinomycin D in the first setup. Induced NO production was enhanced via the AT1 receptor; however, it was diminished via the AT2 receptor. In conclusion, induced NO production is negatively controlled by the AT2, whereas AT1 receptor stimulation enhanced NO synthesis in MCs. The overall NO availability depended on the onset of the inflammatory stimuli with respect to ANG II exposure and the available AT receptors.


2002 ◽  
Vol 282 (4) ◽  
pp. C762-C767 ◽  
Author(s):  
Tatsuya Takizawa ◽  
Hiroshi Yoshikawa ◽  
Miho Yamada ◽  
Hidetoshi Morita

Nitric oxide (NO) production in the rat placenta was monitored and quantified by electron paramagnetic resonance (EPR) spectroscopy with hemoglobin and an Fe- N-(dithiocarboxy)sarcosine (DTCS) complex as NO-trapping reagents. Expression of nitric oxide synthase (NOS) isoforms was also examined by quantitative RT-PCR analysis. The EPR spectrum of the placenta with hemoglobin trapping showed a three-line hyperfine structure ( g = 2.008 and a = 1.66-mT). The EPR signal was diminished after the placenta was homogenized or the NOS inhibitor l-NAME was administered to pregnant rats. Therefore, the specific signal was definitely identified as being derived from endogenous NO spin-trapped by hemoglobin, and the EPR spectrum showed that the NO adduct existed as a pentacoordinate α-NO heme species. The EPR spectrum of the placenta with Fe-DTCS trapping showed a triplet signal ( g = 2.038) derived from an NO-Fe-DTCS complex. The height of the triplet signal did not vary significantly with gestational stage during the last few days of gestation. At the gestational stages examined, the level of NOS II mRNA expression was significantly higher than that of NOS III mRNA. NOS II expression in term ( day 21.5) placenta was significantly increased compared with that in preterm ( day 19.5) placenta ( P < 0.01, n = 4 or 5). These results suggest that NOS II is the predominant producer of NO in the placenta and that NOS II-generated NO plays significant roles in the maintenance of placental functions immediately before birth.


2002 ◽  
Vol 13 (2) ◽  
pp. 313-321
Author(s):  
Ruisheng Liu ◽  
Antonio M. Gutiérrez ◽  
Avi Ring ◽  
A. Erik G. Persson

ABSTRACT. Receptor desensitization of G protein–coupled receptors (GPCRs), which occurs during short-term (seconds to minutes) exposure of cells to agonists, is mediated by phosphorylation and receptor endocytosis. Recycling of the receptors is a requisite for resensitization of the response. The mechanisms that attenuate signaling by GPCRs are of considerable importance to regulation of intercellular signaling and maintenance of their ability to respond to agonists over time. This study evaluates the effect of nitric oxide (NO) on P2Y nucleotide receptor resensitization in cultured rat glomerular mesangial cells. The NO production in cultured mesangial cells was measured by using confocal microscopy and the fluorescence NO indicator 4,5-diaminofluorescein diacetate (DAF-2 DA). l-arginine increased and Nω-nitro-l-arginine methyl ester (l-NAME) decreased NO production significantly (P < 0.05). Calcium responses to ATP were measured with fura-2 and imaging techniques. Repeated stimulation with ATP results in receptor desensitization that is characterized by lower calcium peak amplitude. Desensitization was induced by challenging mesangial cells with four consecutive 2-min pulses of ATP (0.1 mM) separated by 4.5-min control perfusions. Intracellular calcium concentration ([Ca2+]i) increase evoked by second, third, and fourth ATP challenges were about 40%, 26%, and 18% of the first one. The NO precursor, l-arginine (10 mM), and the NO donors, spermine-NONOate (500 μM) and sodium nitroprusside (SNP) (1 mM), were added before and during a fourth ATP challenge. Spermine-NONOate and l-arginine induced a recovery of the [Ca2+]i response to the fourth ATP challenge (P < 0.01 and 0.05, respectively). The NO synthase inhibitor, l-NAME (5 mM), applied along with ATP, was shown to enhance desensitization. 1H-(1,2,4)oxadiazolo(4,3-α)quinoxalin-1-one (ODQ, 30 μM), an inhibitor of guanylate cyclase, was used along with l-arginine, SNP, or spermine-NONOate. There was no significant difference with or without ODQ. Neither ODQ nor 8-Br-cGMP, an analog of cGMP, at different concentrations showed effects on ATP-stimulated [Ca2+]i. There was no elevation of [Ca2+]i when the cells were challenged by different concentrations (1 μM, 100 μM, 1 mM, 20 mM, and 30 mM) of caffeine, caffeine plus ATP (0.1 mM), and 4-chloro-3-ethylphenol (100 μM, 500 μM, and 1 mM), a new agonist of ryanodine receptors. The results indicate that NO can increase the P2Y receptor resensitization in rat glomerular mesangial cells by acting through a cGMP-independent pathway. No evidence was found for the existence of ryanodine-sensitive intracellular calcium stores in rat mesangial cells.


2003 ◽  
Vol 285 (4) ◽  
pp. E871-E875 ◽  
Author(s):  
Marcella M. Hallemeesch ◽  
Ben J. A. Janssen ◽  
Wouter J. de Jonge ◽  
Peter B. Soeters ◽  
Wouter H. Lamers ◽  
...  

Increased nitric oxide (NO) production is the cause of hypotension and shock during sepsis. In the present experiments, we have measured the contribution of endothelial (e) and inducible (i) nitric oxide synthase (NOS) to systemic NO production in mice under baseline conditions and upon LPS treatment (100 μg/10 g ip LPS). NO synthesis was measured by the rate of conversion of l-[ guanidino-15N2]arginine to l-[ ureido-15N]citrulline, and the contribution of the specific NOS isoforms was evaluated by comparing NO production in eNOS-deficient [(–/–)] and iNOS(–/–) mice with that in wild-type (WT) mice. Under baseline conditions, NO production was similar in WT and iNOS(–/–) mice but lower in eNOS(–/–) mice [WT: 1.2 ± 0.2; iNOS(–/–): 1.2 ± 0.2; eNOS(–/–): 0.6 ± 0.3 nmol · 10 g body wt–1· min–1]. In response to the challenge with LPS (5 h), systemic NO production increased in WT and eNOS(–/–) mice but fell in iNOS(–/–) mice [WT: 2.7 ± 0.3; eNOS(–/–): 2.2 ± 0.6; iNOS(–/–): 0.7 ± 0.1 nmol · 10 g body wt–1· min–1]. After 5 h of LPS treatment, blood pressure had dropped 14 mmHg in WT but not in iNOS(–/–) mice. The present findings provide firm evidence that, upon treatment with bacterial LPS, the increase of NO production is solely dependent on iNOS, whereas that mediated by cNOS is reduced. Furthermore, the data show that the LPS-induced blood pressure response is dependent on iNOS.


1998 ◽  
Vol 274 (4) ◽  
pp. F673-F679 ◽  
Author(s):  
Zhonghong Guan ◽  
Shaavhree Y. Buckman ◽  
Lisa D. Baier ◽  
Aubrey R. Morrison

The inflammatory cytokine interleukin-1β (IL-1β) induces both cyclooxygenase-2 (Cox-2) and the inducible nitric oxide synthase (iNOS) with concomitant release of PGs and nitric oxide (NO) by glomerular mesangial cells. In our current studies, we determine whether insulin and IGF-I are involved in the signal transduction mechanisms resulting in IL-1β-induced NO and PGE2biosynthesis in renal mesangial cells. We demonstrate that both insulin and IGF-I increase IL-1β-induced Cox-2 and iNOS protein expression, which in turn enhance PGE2 and NO production. Our data also indicate that both insulin and IGF-I enhance IL-1β-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and SAPK activation. These findings implicate the possible role of the MAPK pathway in mediating the effects of insulin and IGF-I on the upregulation of cytokine-stimulated NO and PG biosynthesis. Together, our results indicate that IGF-I and insulin may function to modulate the renal inflammatory process.


1997 ◽  
Vol 272 (6) ◽  
pp. F721-F728 ◽  
Author(s):  
E. A. Jaimes ◽  
K. A. Nath ◽  
L. Raij

In glomerulonephritides, autacoids such as nitric oxide (NO), reactive oxygen species, and prostanoids are produced in increased amounts in response to cytokines such as interleukin-1 (IL-1). These autacoids influence the expression of glomerular injury by their direct as well as interactive actions. We studied the effect of hydrogen peroxide (H2O2) on NO production in rat mesangial cells. We demonstrate that transient exposure of mesangial cells to H2O2 prior to sustained exposure to IL-1 decreased extracellular accumulation of NO2/NO3 and cellular guanosine 3,'5'-cyclic monophosphate (cGMP) content. H2O2 markedly impaired inducible nitric oxide synthase (iNOS) activity induced by IL-1 directly measured by the conversion of L-[14C]arginine to L-[14C]citrulline. Such impairment in iNOS activity was accompanied by a parallel reduction in iNOS protein abundance but not by a reduced expression of iNOS mRNA. The inhibitory effect of H2O2 on NOS activity was further supported by peroxide-induced impairment in IL-1-driven, NO-dependent synthesis of prostaglandin E2. Our studies thus provide the first direct evidence of a posttranscriptional inhibitory effect of H2O2 on iNOS activity. Additionally, our studies uncover the existence of a previously unrecognized effect of H2O2 on the production of NO that may exert influence on the severity of glomerular injury during glomerular inflammation.


1996 ◽  
Vol 271 (6) ◽  
pp. R1739-R1745 ◽  
Author(s):  
D. L. Xu ◽  
P. Y. Martin ◽  
J. St John ◽  
P. Tsai ◽  
S. N. Summer ◽  
...  

Pregnancy is characterized by hemodynamic and body fluid alterations. Increased nitric oxide (NO) production has been suggested to play a role in the hemodynamic alterations of pregnancy and has also been reported to increase arginine vasopressin (AVP) release. We therefore hypothesized that gestation could increase both NO synthase (NOS) constitutive isoforms, neuronal NOS and endothelial NOS, and thereby contribute to the hyposmolality and peripheral arterial vasodilation of pregnancy, respectively. The present study was therefore undertaken to examine the constitutive NOS isoforms in aortas, mesenteric arteries, and hypothalami of pregnant rats on day 20 of gestation compared with age-matched nonpregnant rats. Plasma AVP was determined by radioimmunoassay and hypothalamic mRNA AVP by solution hybridization assay. Hypothalamic neuronal NOS was assessed by Northern blot and Western blot; endothelial NOS was assessed by Western blot in arteries and hypothalamus. The results demonstrated that 1) plasma AVP and hypothalamic AVP mRNA are increased in pregnant rats (n = 8), 2) neuronal NOS protein and mRNA are increased in hypothalamus of pregnant rats (n = 4), and 3) endothelial NOS expression, as assessed by Western blot analysis, is increased in both conductance (aorta) as well as resistance (mesenteric) arteries of pregnant rats (n = 4). We conclude that both of the constitutive NOS isoforms are increased in pregnant rats, suggesting that the peripheral arterial vasodilation and hyposmolality of pregnancy could be mediated by these isoforms.


Sign in / Sign up

Export Citation Format

Share Document