scholarly journals Expression of type 1 angiotensin II receptor subtypes and angiotensin II-induced calcium mobilization along the rat nephron.

1997 ◽  
Vol 8 (11) ◽  
pp. 1658-1667 ◽  
Author(s):  
N Bouby ◽  
A Hus-Citharel ◽  
J Marchetti ◽  
L Bankir ◽  
P Corvol ◽  
...  

The localization of two type 1 angiotensin II receptor subtype mRNA, AT1A and AT1B, was determined by reverse transcription-PCR on microdissected glomeruli and nephron segments. The coupling sensitivity of these two receptor subtypes was evaluated by measuring variations in intracellular calcium ([Ca2+]i) elicited by angiotensin II (Ang II) in structures expressing either AT1A or AT1B mRNA, using Fura-2 fluorescence. The highest expression of AT1 mRNA was found in glomerulus, proximal tubule, and thick ascending limb. In glomerulus, AT1A and AT1B mRNA were similarly expressed, whereas in all nephron segments AT1A mRNA expression was dominant (approximately 84%). The increase in [Ca2+]i elicited by 10(-7) mol/L Ang II was highest in proximal segments (delta [Ca2+]i is approximately equivalent to 300 to 400 nmol/L) and thick ascending limb (delta [Ca2+]i is approximately equivalent to 200 nmol/L). In glomerulus and collecting duct, the response was lower (delta < 100 nmol/L). The median effective concentrations for Ang II were of the same order of magnitude in glomerulus (12.2 nmol/L), in which both AT1A and AT1B are expressed, and in cortical thick ascending limb (10.3 nmol/ L), in which AT1A is almost exclusively expressed. The Ang II-induced calcium responses were totally abolished by the AT1 receptor antagonist losartan (1 mumol/L) but not by the AT2 antagonist PD 123319 (1 mumol/L). In the absence of external Ca2+, the peak phase of the response induced by 10(-7) mol/L Ang II was reduced and shortened, suggesting that a part of the [Ca2+]i increase originated from the mobilization of the intracellular Ca2+ pool. In conclusion, these results demonstrate that in the rat kidney: (1) AT1A is the predominant AT1 receptor subtype expressed in the nephron segments, (2) glomerulus is the only structure with a relatively high AT1B mRNA content, and (3) AT1A and AT1B receptor subtypes do not differ in their efficiency for the activation of calcium second-messenger system.


1995 ◽  
Vol 269 (5) ◽  
pp. F730-F738 ◽  
Author(s):  
I. D. Weiner ◽  
A. R. New ◽  
A. E. Milton ◽  
C. C. Tisher

Angiotensin II (ANG II) regulates whole kidney ion transport, yet its effects in the collecting duct are unknown. The purpose of these studies was to determine whether ANG II regulates luminal alkalinization and acidification in the rabbit cortical collecting duct (CCD). The rate of luminal alkalinization or acidification was measured as the rate of change of luminal fluid pH under stop-flow conditions using in vitro microperfused CCD segments. Outer CCD alkalinized the luminal fluid, consistent with net HCO3- secretion. Addition of ANG II, 10(-7) M, to the peritubular solution for 30 min significantly stimulated luminal alkalinization. The stimulatory effect of ANG II was not due to time-dependent effects and was blocked by peritubular addition of the ANG II type 1 (AT1) receptor antagonist, losartan, at 10(-6) M. Losartan, 10(-6) M, when added to the peritubular solution, did not alter the rate of luminal alkalinization independent of ANG II. In contrast, peritubular ANG II, 10(-7) M, did not alter inner CCD luminal acidification. Addition of ANG II to the peritubular solution at the lower concentration of 10(-10) M did not alter the rates of luminal alkalinization and acidification in the outer and inner CCD, respectively. Peritubular ANG II, 10(-7) M, but not vehicle, stimulated B cell apical HCO3- secretion occurring in response to peritubular Cl- removal. These studies demonstrate that ANG II acts through a basolateral AT1 receptor to stimulate outer CCD luminal alkalinization via, at least in part, B cell stimulation.



1996 ◽  
Vol 271 (1) ◽  
pp. H212-H221 ◽  
Author(s):  
B. E. Cox ◽  
C. R. Rosenfeld ◽  
J. E. Kalinyak ◽  
R. R. Magness ◽  
P. W. Shaul

Uteroplacentral responses to infused angiotensin II (ANG II) are less than those elicited by systemic vasculature. This does not reflect ANG II receptor (AT) downregulation but may reflect differences in AT-receptor subtypes expressed. We examined AT-receptor subtypes in smooth muscle (SM) from uterine (UA), mesenteric, renal, and mammary arteries and aorta from nulliparous (n = 12), pregnant (n = 18; 105-140 days, term = 145 days), postpartum (n = 5; 6-9 days after delivery), and nonpregnant parous (n = 14) ewes by assessing displacement of 125I-labeled ANG II binding by [Sar1, Ile8]ANG II (AT1 and AT2), losartan (AT1) PD-123319 (AT2), and CGP-42112A (AT2). AT2 receptors accounted for 75-90% of total binding in UA. Except for mammary arteries, other arteries expressed only AT1 receptors. Receptor subtype expression was not altered by reproductive state in any artery studied. With the use of autoradiography, AT2 receptors appear to predominate in media of small intramyometrial arteries, whereas AT1 receptors predominate in the luminal portion. We therefore determined which subtype mediates endothelium-derived ANG II-induced increases in UA PGI2 synthesis during pregnancy. ANG II (0.05 microM) increased PGI2 synthesis 62%, from 214 +/- 13 to 346 +/- 23 pg.mg-1.h-1 (P < 0.05). Losartan (1.0 microM) inhibited the rise in PGI2 (257 +/- 24 vs. 238 +/- 25 pg.mg-1.h-1), whereas 1.0 microM PD-123319 had no effect (231 +/- 23 vs. 337 +/- 31 pg.mg-1.h-1; P < 0.05). AT2 receptors do not mediate ANG II-induced vasoconstriction, thus differences in uteroplacental and systemic sensitivity to ANG II may reflect predominance of AT2 receptors in UASM and ANG II-induced increases in UA prostacyclin synthesis by endothelial AT1 receptors.



1998 ◽  
Vol 274 (6) ◽  
pp. F1062-F1069 ◽  
Author(s):  
Valérie Gimonet ◽  
Laurence Bussieres ◽  
Anissa A. Medjebeur ◽  
Bernard Gasser ◽  
Brigitte Lelongt ◽  
...  

To investigate the role of angiotensin II (ANG II) in nephrogenesis, a developmental study of renal AT1 and AT2 receptor mRNA expression was performed in parallel with the quantitative and qualitative analysis of metanephros development in fetal lamb from 60 to 140 days of gestation. Both ANG II receptor subtypes were expressed early during nephrogenesis but displayed specific spatial and temporal distribution during gestation. High-AT2 mRNA expression took place in the outermost nephrogenic area and in the undifferentiated mesenchymal cells surrounding the ampulla; level of AT2 expression in this localization followed closely glomeruli proliferation rate and disappeared after nephrogenesis completion (>120 days). AT2 mRNA was also detected in the differentiated epithelial cells of macula densa of maturing glomeruli. Although most of AT1 mRNA labeling was found in the mesangial cells of maturing glomeruli, where it persisted after nephrogenesis completion, additional labeling was found in undifferentiated cells, in cells invading the inferior cleft of S-shaped bodies (80 days), and in medullar cells between tubules (120 days). Our results suggest that each receptor subtype has a specific role in renal morphogenesis, i.e., AT2 in mesenchymal proliferation or apoptosis and AT1 in vascular smooth muscle cells differentiation.



Author(s):  
Daan H. H. M. Viering ◽  
Anneke P. Bech ◽  
Jeroen H. F. de Baaij ◽  
Eric J. Steenbergen ◽  
A. H. Jan Danser ◽  
...  

AbstractBackgroundGenetic loss of function ofAGT(angiotensinogen),REN(renin),ACE(angiotensin-converting enzyme), orAGTR1(type-1 angiotensin II receptor) leads to renal tubular dysgenesis (RTD). This syndrome is almost invariably lethal. Most surviving patients reach stage 5 chronic kidney disease at a young age.MethodsHere, we report a 28-year-old male with a homozygous truncating mutation inAGTR1(p.Arg216*), who survived the perinatal period with a mildly impaired kidney function. In contrast to classic RTD, kidney biopsy showed proximal tubules that were mostly normal. During the subsequent three decades, we observed evidence of both tubular dysfunction (hyperkalemia, metabolic acidosis, salt-wasting and a urinary concentrating defect) and glomerular dysfunction (reduced glomerular filtration rate, currently ~30 mL/min/1.73 m2, accompanied by proteinuria). To investigate the recurrent and severe hyperkalemia, we performed a patient-tailored functional test and showed that high doses of fludrocortisone induced renal potassium excretion by 155%. Furthermore, fludrocortisone lowered renal sodium excretion by 39%, which would have a mitigating effect on salt-wasting. In addition, urinary pH decreased in response to fludrocortisone. Opposite effects on urinary potassium and pH occurred with administration of amiloride, further supporting the notion that a collecting duct is present and able to react to fludrocortisone.ConclusionsThis report provides living proof that even truncating loss-of-function mutations inAGTR1are compatible with life and relatively good GFR and provides evidence for the prescription of fludrocortisone to treat hyperkalemia and salt-wasting in such patients.



2000 ◽  
Vol 278 (2) ◽  
pp. H353-H359 ◽  
Author(s):  
Donna S. Lambers ◽  
Suzanne G. Greenberg ◽  
Kenneth E. Clark

The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 μg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng ⋅ kg−1 ⋅ min−1for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT2) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT1) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT2 blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 μg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow ( P < 0.03), which were potentiated in the presence of the AT2 antagonist ( P < 0.02). Addition of the AT1 antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure ( P < 0.01). Significant uterine vasodilation ( P < 0.01) was noted with AT1 blockade in the second experiment, which was reversed by administration of the AT2 antagonist or by the nitric oxide synthetase inhibitor N ω-nitro-l-arginine methyl ester. We conclude that the AT1- receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT2-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT2-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.





1995 ◽  
Vol 268 (2) ◽  
pp. F220-F226 ◽  
Author(s):  
D. P. Healy ◽  
M. Q. Ye ◽  
M. Troyanovskaya

The physiological effects of angiotensin II (ANG II) on the kidney are mediated primarily by the ANG II type 1 (AT1) receptor. Two highly similar AT1 receptor subtypes have been identified in the rat by molecular cloning techniques, namely AT1A and AT1B. The intrarenal localization of the AT1A and AT1B receptor subtypes has not been studied by hybridization methods with subtype-specific receptor probes. Using radiolabeled probes from the 3' noncoding region of the AT1A and AT1B cDNAs, we localized AT1 mRNA in rat kidney by in situ hybridization. Specificity of the 3' noncoding region probes was tested by Northern blot and solution hybridization methods. AT1A mRNA levels were highest in the liver, kidney, and adrenal. In contrast, AT1B mRNA levels were highest in the adrenal and pituitary and low in kidney. Autoradiographic localization of 125I-[Sar1,Ile8]ANG II binding indicated that the highest levels of AT1 receptors were found in glomeruli and vascular elements. In situ hybridization with a nonselective AT1 receptor riboprobe indicated that the highest levels of AT1 mRNA were in the outer medullary vasa recta and cortical glomeruli with additional diffuse labeling of the cortex and outer medulla, consistent with labeling of tubular elements. In contrast, in situ hybridization with the AT1 subtype selective probes revealed that AT1A receptor mRNA was primarily localized to the vasa recta and diffusely to the outer stripe of the outer medulla and the renal cortex.(ABSTRACT TRUNCATED AT 250 WORDS)



1996 ◽  
Vol 271 (1) ◽  
pp. C154-C163 ◽  
Author(s):  
C. Sumners ◽  
M. Zhu ◽  
C. H. Gelband ◽  
P. Posner

Angiotensin II (ANG II) elicits an ANG II type 1 (AT1) receptor-mediated decrease in voltage-dependent K+ current (Ik) and an incrase in voltage-dependent Ca2+ current (ICa) in neurons cocultured from newborn rat hypothalamus and brain stem. Modulation of these currents by ANG II involves intracellular messengers that result from an AT1 receptor-mediated stimulation of phosphoinositide hydrolysis. For example, the effects of ANG II on IK and ICa were abolished by phospholipase C antagonists. The reduction in IK produced by ANG II was attenuated by either protein kinase C (PKC) antagonists or by chelation of intracellular Ca2+. By contrast, PKC antagonism abolished the stimulatory effect of ANG II on ICa. Superfusion of the PKC activator phorbol 12-myristate 13-acetate produced effects on IK and ICa similar to those observed after ANG II. Furthermore, intracellular application of inositol 1,4,5-trisphosphate (IP3) elicited a significant reduction in IK. This suggests that the AT1 receptor-mediated changes in neuronal K+ and Ca2+ currents involve PKC (both IK and ICa) and IP3 and/or intracellular Ca2+ (IK).



2008 ◽  
Vol 295 (6) ◽  
pp. C1633-C1646 ◽  
Author(s):  
Gary E. Striker ◽  
Francoiçe Praddaude ◽  
Oscar Alcazar ◽  
Scott W. Cousins ◽  
Maria E. Marin-Castaño

The early stage of age-related macular degeneration (AMD) is characterized by the formation of subretinal pigment epithelium (RPE) deposits as a result of the dysregulation in the turnover of extracellular matrix (ECM) molecules. However, the mechanism involved remains unclear. Hypertension (HTN) is an important risk factor for AMD, and angiotensin II (ANG II) is the most important hormone associated with HTN. However, the relevance of ANG II receptors and ANG II effects on RPE have not been investigated yet. Therefore, the expression and regulation of ANG II receptors as well as the ECM turnover were studied in human RPE. ANG II receptors were expressed and upregulated by ANG II in human RPE. This regulation resulted in functional receptor expression, since an increase in intracellular concentration of calcium was observed upon ANG II stimulation. ANG II also increased matrix metalloproteinase (MMP)-2 activity and MMP-14 at the mRNA and protein levels as well as type IV collagen degradation. These ANG II effects were abolished in the presence of the ANG II receptor subtype 1 (AT1) receptor antagonist candesartan. In contrast, ANG II decreased type IV collagen via both AT1 and AT2 receptors, suggesting a synergistic effect of the two receptor subtypes. In conclusion, we have confirmed the presence of ANG II receptors in human RPE and their regulation by ANG II as well as the regulation of ECM molecules via ANG II receptors. Our data support the hypothesis that ANG II may exert biological function in RPE through ANG II receptors and that ANG II may cause dysregulation of molecules that play a major role in the turnover of ECM in RPE basement membrane and Bruch's membrane, suggesting a pathogenic mechanism to explain the link between HTN and AMD.



Sign in / Sign up

Export Citation Format

Share Document