scholarly journals IMPROVING DYNAMIC REGIME OF ROLLING FOR INCREASING DURABILITY OF BALL-ROLLING MILL ROLLS

2019 ◽  
Vol 61 (12) ◽  
pp. 927-932 ◽  
Author(s):  
V. Yu. Rubtsov ◽  
O. I. Shevchenko ◽  
M. V. Mironova

One  of  the  important  reasons  for  the  downtime  of  ball  rolling  mills  is  replacement  of  rolls  due  to  their  wear  and  tear.  The  degree  and  zones  of  critical  wear  of  ball  rolling  rolls  are  investigated  in  the  article, where the greatest wear is observed over the flanges in zone of billet  capture.  Conditions  necessary  to  capture  the  blank  and  to  perform  rolling  process  are  analytically  determined.  Variable  frequency  method  of  roll  rotations  is  proposed  as  a  progressive  technology  for  blank supply. The results of tests for its variations in accordance with  linear  and  quadratic  law  are  presented.  Known  formulas  determining  average  strain  rate  at  rolls  rotational  speed  change  are  converted  for  linear and quadratic dependences. Experimental studies have been carried  out  in  conditions  of  EVRAZ  Nizhnetagilsky  Metallurgical  Plant  ball rolling mills during rolling of 60mm ball made of Sh-3G steel. Experiments  were  performed  for  given  parameters  of  manual  change  in  rolls rotation speed at blank capture by rollers. The results have shown  a  significant  effect  of  change  in  rotational  speed  on  average  specific  pressure during blank capture. Evaluation of torque-time and average  contact  pressure  for  calculated  and  experimental  data  are  presented.  Empirical characteristics are also described at variable rotational speed  of rolls according to linear and quadratic law. Acceptable convergence  of results of calculated and empirical characteristics is determined. Engineering solution has been proposed for that task. It consists in installation of a thyristor converter. This solution allows reduction of rolls  speed before blank capture. Also, this solution will increase frequency  to  the  nominal  value  according  to  the  given  law  after  blank  capture.  As an obtained result, there is uniform distribution of average contact  pressure over the entire length of the roll under different operating conditions  of  mill  in  automatic  mode. Application  of  this  technique  will  reduce wear degree of the rolling tool. At the same time, productivity  of ball rolling mill will be maintained. Rolls consumption and number  of rolls change will decrease due to rolls wear.

2014 ◽  
Vol 59 (4) ◽  
pp. 1533-1538
Author(s):  
A. Kawałek ◽  
H. Dyja ◽  
M. Knapinski ◽  
G. Banaszek ◽  
M. Kwapisz

Abstract In order to enhance the quality of plates, various solutions are being implemented, including normalizing rolling, the process of rolling followed by accelerated cooling, as well as new roll gap control systems. The hydraulic positioning of rolls and the working roll bending system can be mentioned here. The implementation of those systems results in increased loads of the rolling stands and working tools, that is the rolls. Another solution aimed at enhancing the cross-sectional and longitudinal shape of rolled plate is the introduction of asymmetric rolling, which consists in the intentional change of the stress and strain state in the roll gap. Asymmetric rolling systems have been successfully implemented in strip cold rolling mills, as well as in sheet hot rolling mills. The paper present results of studies on the effect of roll rotational speed asymmetry and other rolling process parameters on the change in the shape of rolled strip and the change of rolls separating force for the conditions of normalizing rolling of plates in the finishing stand. The variable process parameters were: the roll rotational speed asymmetry factor, av; the strip shape factor, h0/D; and the relative rolling reduction, ε. Working rolls of the diameter equal to 1000 mm and a constant lower working roll rotational speed of n = 50 rpm were assumed for the tests. The asymmetric rolling process was run by varying the rotational speed of the upper roll, which was lower than that of the lower roll. The range of variation of the roll rotational speed factor, av =vd/vg, was 1.01÷1.15. A strip shape factor of h0/D = 0.05÷0.014 was assumed. The range of rolling reductions applied was ε = 0.08÷0.50. The material used for tests was steel of the S355J2G3 grade. For the simulation of the three-dimensional plastic flow of metal in the roll gap during the asymmetric hot rolling of plates, the mathematical model of the FORGE 2008 ® program was used. For the mathematical description of the effect of rolling parameters on the strip curvature and rolls separating force the special multivariable polynomial interpolation was used. This method of tensor interpolation in Borland Builder programming environment was implemented. On the basis of the carried out analysis can be state, that by using the appropriate relative rolling reduction and working roll peripheral speed asymmetry factor for a given feedstock thickness (strip shape ratio) it is possible to completely eliminate the unfavorable phenomenon of strip bending on exit from the roll gap, or to obtain the permissible strip curvature which does not obstructs the free feed of the strip to the next pass or transferring the plate to the accelerated plate cooling stations. Additionally by introducing the asymmetric plate rolling process through differentiating working roll peripheral speeds, depending on the asymmetry factor used, the magnitude of the total roll separating force can be reduced and, at the same time, a smaller elastic deflection of rolling stand elements can be achieved. As a result smaller elastic deflection of the working rolls, smaller dimensional deviations across its width and length finished plate can be obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangxu Zhang ◽  
Jiahan Bao ◽  
Wenhao Li ◽  
Zhichong Wang ◽  
Xiangshuai Meng

It is important to study the vibration of rolling mills to improve the stability of rolling production. A dynamic rolling process model is established by considering the elastic recovery of the exit strip and the influence of multiroll equilibrium, and the accuracy of the model is verified by experimental data. On this basis, based on the distribution of friction force in the deformation zone, the rolling force and rolling torque are nonlinearized. In addition, a rolling mill structure model is established by considering the structure gap and a piecewise nonlinear horizontal-vertical-torsional vibration model of the rolling mill is established by combining the structure model and dynamic rolling process model. Finally, the amplitude-frequency characteristics of the work roll under different external excitation amplitude and the dynamic bifurcation characteristics of the work roll under different gaps are analyzed. The study indicates that, by reducing excitation amplitude and structure gap, the system vibration can be reduced. The research results can provide a theoretical reference for further exploration of the coupling vibration of hot rolling mills.


2010 ◽  
Vol 638-642 ◽  
pp. 2628-2633 ◽  
Author(s):  
Konrad Błażej Laber ◽  
Henryk Dyja ◽  
Sebastian Mróz

The paper presents results of theoretical and experimental studies on the influence of strip temperature reduction at the final stage of the normalizing rolling process in a continuous bar rolling mill on the energy and force parameters. The studies were carried out for 38 mm-diameter round bars of constructional steel S355J2G3 (St52-3 acc. to DIN). At the first stage, numerical modelling of the rolling process was performed for the conditions of the currently used rolling technology. The aim of this stage of the work was to determine the distribution of strip temperature during the rolling process and of strip temperature after the rolling process. The obtained computation results were compared with the measurement results recorded during the actual rolling process using a thermovision camera. A computer program designed for three-dimensional modelling of metal flow during rolling in passes was used for the determination of the distribution of strip temperature during rolling. The second stage of the studies included modelling of the bar rolling technology modified by applying normalizing rolling after introducing accelerated strip cooling at the final stage of rolling. The aim of this stage of the work was to establish the influence of reduced strip temperature on the change in the values of the energy and force parameters of the process. By comparing the computed values of rolling power with those of the permissible power it was found that these values were lower than the permissible power of the rolling machine’s main drives installed in the Rolling Mill under analysis. Thus, it was demonstrated that it was possible to implement the process of normalizing rolling in the conditions of the Shape Mill under study.


2021 ◽  
Vol 13 (7) ◽  
pp. 3851
Author(s):  
Jiří David ◽  
Pavel Švec ◽  
Vít Pasker ◽  
Romana Garzinová

This article deals with the issue of computer vision on a rolling mill. The main goal of this article is to describe the designed and implemented algorithm for the automatic identification of the character string of billets on the rolling mill. The algorithm allows the conversion of image information from the front of the billet, which enters the rolling process, into a string of characters, which is further used to control the technological process. The purpose of this identification is to prevent the input pieces from being confused because different parameters of the rolling process are set for different pieces. In solving this task, it was necessary to design the optimal technical equipment for image capture, choose the appropriate lighting, search for text and recognize individual symbols, and insert them into the control system. The research methodology is based on the empirical-quantitative principle, the basis of which is the analysis of experimentally obtained data (photographs of billet faces) in real operating conditions leading to their interpretation (transformation into the shape of a digital chain). The first part of the article briefly describes the billet identification system from the point of view of technology and hardware resources. The next parts are devoted to the main parts of the algorithm of automatic identification—optical recognition of strings and recognition of individual characters of the chain using artificial intelligence. The method of optical character recognition using artificial neural networks is the basic algorithm of the system of automatic identification of billets and eliminates ambiguities during their further processing. Successful implementation of the automatic inspection system will increase the share of operation automation and lead to ensuring automatic inspection of steel billets according to the production plan. This issue is related to the trend of digitization of individual technological processes in metallurgy and also to the social sustainability of processes, which means the elimination of human errors in the management of the billet rolling process.


2015 ◽  
Vol 60 (2) ◽  
pp. 809-813 ◽  
Author(s):  
A. Stefanik ◽  
A. Morel ◽  
S. Mróz ◽  
P. Szota

Abstract Technology of round bars rolling on a three-high skew rolling mills allows rolling of standard materials such as steel and aluminum, as well as new materials, especially hard deformable materials. The paper presents the results of theoretical and experimental rolling process of aluminum bars with a diameter of 20 mm. As the stock round bars with a diameter of 25 mm made of aluminum grade 1050A and aluminum alloy grade 2017A were used. The rolling process of aluminum bars has been carried out in a single pass. The numerical analysis was carried out by using computer program Forge2011®. On the basis of theoretical research it has been determined the state of deformation, stress and temperature distribution during rolling of aluminum bars. In addition, the results of theoretical research allowed to determine the schema of the metal plastic flow in the roll gap. Verification of the theoretical research was carried out during the rolling of aluminum bars on the RSP 40/14 laboratory three-high skew rolling mill. From the finished bars were taken the samples to set the shape and compared with the results of theoretical research. Finished aluminum round bars were characterized by low ovality and good surface quality.


2019 ◽  
Vol 62 (7) ◽  
pp. 511-516
Author(s):  
A. I. Bozhkov ◽  
D. A. Kovalev ◽  
V. S. Potapov ◽  
R. I. Shul’gin

A method for calculating the modes of strips cold rolling on multiple-stand (reversing) rolling mill is considered providing minimum power consumption with maximum process stabilization at high speeds and obtaining the given quality of cold-rolled strips (minimum probability of surface defects, compliance with thickness tolerances and flatness requirements of the used standards). The problem is solved using the conditional optimization method. As an optimization criterion, it is proposed to use the total energy expenditure spent on the rolling process, as conditions – technological and structural limitations on the rolling parameters and conditions of strips stability to breaks and surface defects formation. The decision to develop this innovative method is due to the fact that a large number of existing approaches to calculation and design of rolling modes have visible advantages and disadvantages. In many cases, the researchers are trying to take into account several requirements that ensure stability of rolling process, its quality, the equipment operating conditions, reduction of energy consumption, metal, auxiliary materials and the specified (maximum) mill productivity. However, some of these requirements can be contradictory and the best one will be the mode that with a high degree of probability guarantees the fulfillment, in a certain proportion, of the entire set of requirements. Therefore, such calculation method is the presented in this article. Calculation of the cold rolling regimes was limited to selection and distribution of the crimping along the cages (passages in the reversing mill). Also, the strip strains are selected in the intercellular spaces, on the decoiler and coiler, and in setting the speed wedge in a particular system of constraints imposed on the input and output process variables as a function of the adopted optimality criterion. As it was noted earlier, the problem was solved with the help of the conditional optimization method with specification of the optimization criterion.


2019 ◽  
Vol 62 (10) ◽  
pp. 756-762 ◽  
Author(s):  
A. S. Aleshchenko ◽  
A. S. Budnikov ◽  
E. A. Kharitonov

 Pipe rolling plants (PRP) with three-high screw rolling mills are  used to produce hot-rolled seamless pipes. In Russia, two such rolling  units are used: PRP 160 at Pervouralsk Novotrubny Plant and PRP  200  at Volzhsky Pipe Plant. Recently, the most acute issue is increasing their  technological capabilities. There is a need of expanding size and grade  mix, as well as non-traditional use of gauge and rolling mill for screw  rolling. The paper presents results of experimental study of the process  of reduction or un-adjusting rolling of pipes on three-high screw rolling  mills with an increase in reduction of diameter up to 25  %. The results  of computer finite element modeling in QFORM program are provided.  The aim of this work was to study effect of rolling process with increased  reduction in diameter on change of metal form in deformation zone and  changes in geometrical dimensions at reduction of cups with different  wall thickness on the pilot mill. Important role in process of metal forming during screw rolling (especially when rolling hollow products and  pipes) plays cupped blank ovality that is equal to the ratio of the roll  radius when the metal comes in contact with the roller to the radius under  the roller in the cross section of deformation zone. Ovality characterizes  stability of change in geometric dimensions of pipes and their resistance  to deformation in inter-roll space. The reduction of thin-wall cupped  blank is accompanied by large va lues of ovality, deformation process is  less stable, and as a result, form defects (faceting) and end defects occur  during plug rolling. Ovality at plug rolling increases more intensely in  comparison with plugless rolling. Presence of plug limits displacement  of metal in axial direction and contributes to displacement of metal in  gaps between rollers. At plugged rolling, it is necessary to use rolls with  collars allowing main reduction along the wall, thereby localizing reduction zone on the plug, and reducing ovality of cupped blanks.


1995 ◽  
Vol 23 (2) ◽  
pp. 116-135 ◽  
Author(s):  
H. Shiobara ◽  
T. Akasaka ◽  
S. Kagami ◽  
S. Tsutsumi

Abstract The contact pressure distribution and the rolling resistance of a running radial tire under load are fundamental properties of the tire construction, important to the steering performance of automobiles, as is well known. Many theoretical and experimental studies have been previously published on these tire properties. However, the relationships between tire performances in service and tire structural properties have not been clarified sufficiently due to analytical and experimental difficulties. In this paper, establishing a spring support ring model made of a composite belt ring and a Voigt type viscoelastic spring system of the sidewall and the tread rubber, we analyze the one-dimensional contact pressure distribution of a running tire at speeds of up to 60 km/h. The predicted distribution of the contact pressure under appropriate values of damping coefficients of rubber is shown to be in good agreement with experimental results. It is confirmed by this study that increasing velocity causes the pressure to rise at the leading edge of the contact patch, accompanied by the lowered pressure at the trailing edge, and further a slight movement of the contact area in the forward direction.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


2021 ◽  
Vol 13 (14) ◽  
pp. 7998
Author(s):  
Maxime Binama ◽  
Kan Kan ◽  
Hui-Xiang Chen ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
...  

The utilization of pump as turbines (PATs) within water distribution systems for energy regulation and hydroelectricity generation purposes has increasingly attracted the energy field players’ attention. However, its power production efficiency still faces difficulties due to PAT’s lack of flow control ability in such dynamic systems. This has eventually led to the introduction of the so-called “variable operating strategy” or VOS, where the impeller rotational speed may be controlled to satisfy the system-required flow conditions. Taking from these grounds, this study numerically investigates PAT eventual flow structures formation mechanism, especially when subjected to varying impeller rotational speed. CFD-backed numerical simulations were conducted on PAT flow under four operating conditions (1.00 QBEP, 0.82 QBEP, 0.74 QBEP, and 0.55 QBEP), considering five impeller rotational speeds (110 rpm, 130 rpm, 150 rpm, 170 rpm, and 190 rpm). Study results have shown that both PAT’s flow and pressure fields deteriorate with the machine influx decrease, where the impeller rotational speed increase is found to alleviate PAT pressure pulsation levels under high-flow operating conditions, while it worsens them under part-load conditions. This study’s results add value to a thorough understanding of PAT flow dynamics, which, in a long run, contributes to the solution of the so-far existent technical issues.


Sign in / Sign up

Export Citation Format

Share Document