scholarly journals Theoretical And Experimental Analysis Of Aluminium Bars Rolling Process In Three-High Skew Rolling Mill

2015 ◽  
Vol 60 (2) ◽  
pp. 809-813 ◽  
Author(s):  
A. Stefanik ◽  
A. Morel ◽  
S. Mróz ◽  
P. Szota

Abstract Technology of round bars rolling on a three-high skew rolling mills allows rolling of standard materials such as steel and aluminum, as well as new materials, especially hard deformable materials. The paper presents the results of theoretical and experimental rolling process of aluminum bars with a diameter of 20 mm. As the stock round bars with a diameter of 25 mm made of aluminum grade 1050A and aluminum alloy grade 2017A were used. The rolling process of aluminum bars has been carried out in a single pass. The numerical analysis was carried out by using computer program Forge2011®. On the basis of theoretical research it has been determined the state of deformation, stress and temperature distribution during rolling of aluminum bars. In addition, the results of theoretical research allowed to determine the schema of the metal plastic flow in the roll gap. Verification of the theoretical research was carried out during the rolling of aluminum bars on the RSP 40/14 laboratory three-high skew rolling mill. From the finished bars were taken the samples to set the shape and compared with the results of theoretical research. Finished aluminum round bars were characterized by low ovality and good surface quality.

2015 ◽  
Vol 220-221 ◽  
pp. 892-897 ◽  
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Henryk Dyja

One of the modern methods of production of round bars is the process of rolling in three-high skew rolling mill. This method enables the production of bars with both standard materials as well as hard deformation materials. In this paper, the results of theoretical and laboratory research of the 20 mm aluminum A1050 round rods rolling in three-high skew rolling mill process are presented. The numerical analysis was carried out upon applying the Forge 2011® software package. Based on the theoretical research, the stress, strain and temperature distribution during the rolling process were determined. In order to verify the numerical results, rolling aluminum rods were explored in laboratory conditions.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 764
Author(s):  
Jarosław Bartnicki ◽  
Yingxiang Xia ◽  
Xuedao Shu

The paper presents chosen aspects of the skew rolling process of hollow stepped products with the use of a skew rolling mill designed and manufactured at the Lublin University of Technology. This machine is characterized by the numerical control of spacing between the working rolls and the sequence of the gripper axial movement, which allows for the individual programming of the obtained shapes of parts such as stepped axles and shafts. The length of these zones and the values of possibly realizable cross-section reduction and obtained outlines are the subject of this research paper. The chosen results regarding the influence of the technological parameters used on the course of the process are shown in the present study. Numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a skew rolling mill, were applied in the conducted research. The work takes into account the influence of cross-section reduction of the hollow parts and the feed rate per rotation on the metal flow mechanisms in the skew rolling process. The presented results concern the obtained dimensional deviations and changes in the wall thickness determining the proper choice of technological parameters for hollow parts formed by the skew rolling method. Knowledge about the cause of the occurrence of these limitations is very important for the development of this technology and the choice of the process parameters.


2016 ◽  
Vol 716 ◽  
pp. 864-870
Author(s):  
Andrzej Stefanik ◽  
Piotr Szota ◽  
Sebastian Mróz ◽  
Teresa Bajor ◽  
Sonia Boczkal

This paper presents the research results of the microstructure changes of the round rods of AZ31 magnesium alloy in the hot rolling processes. The rolling was conducted in duo mill and a three-high skew rolling mill. Numerical modelling of the AZ31 magnesium alloy round rods rolling process was conducted using a computer program Forge 2011®. The verification of the results of numerical modelling was carried out during laboratory tests in a two-high rolling mill D150 and a three-high skew rolling mill RSP 40/14. Distributions of the total effective strain and temperature during AZ31 rods rolling process were determined on the basis of the theoretical analysis. Microstructure and texture changes during both analysed processes were studied.


2014 ◽  
Vol 59 (4) ◽  
pp. 1533-1538
Author(s):  
A. Kawałek ◽  
H. Dyja ◽  
M. Knapinski ◽  
G. Banaszek ◽  
M. Kwapisz

Abstract In order to enhance the quality of plates, various solutions are being implemented, including normalizing rolling, the process of rolling followed by accelerated cooling, as well as new roll gap control systems. The hydraulic positioning of rolls and the working roll bending system can be mentioned here. The implementation of those systems results in increased loads of the rolling stands and working tools, that is the rolls. Another solution aimed at enhancing the cross-sectional and longitudinal shape of rolled plate is the introduction of asymmetric rolling, which consists in the intentional change of the stress and strain state in the roll gap. Asymmetric rolling systems have been successfully implemented in strip cold rolling mills, as well as in sheet hot rolling mills. The paper present results of studies on the effect of roll rotational speed asymmetry and other rolling process parameters on the change in the shape of rolled strip and the change of rolls separating force for the conditions of normalizing rolling of plates in the finishing stand. The variable process parameters were: the roll rotational speed asymmetry factor, av; the strip shape factor, h0/D; and the relative rolling reduction, ε. Working rolls of the diameter equal to 1000 mm and a constant lower working roll rotational speed of n = 50 rpm were assumed for the tests. The asymmetric rolling process was run by varying the rotational speed of the upper roll, which was lower than that of the lower roll. The range of variation of the roll rotational speed factor, av =vd/vg, was 1.01÷1.15. A strip shape factor of h0/D = 0.05÷0.014 was assumed. The range of rolling reductions applied was ε = 0.08÷0.50. The material used for tests was steel of the S355J2G3 grade. For the simulation of the three-dimensional plastic flow of metal in the roll gap during the asymmetric hot rolling of plates, the mathematical model of the FORGE 2008 ® program was used. For the mathematical description of the effect of rolling parameters on the strip curvature and rolls separating force the special multivariable polynomial interpolation was used. This method of tensor interpolation in Borland Builder programming environment was implemented. On the basis of the carried out analysis can be state, that by using the appropriate relative rolling reduction and working roll peripheral speed asymmetry factor for a given feedstock thickness (strip shape ratio) it is possible to completely eliminate the unfavorable phenomenon of strip bending on exit from the roll gap, or to obtain the permissible strip curvature which does not obstructs the free feed of the strip to the next pass or transferring the plate to the accelerated plate cooling stations. Additionally by introducing the asymmetric plate rolling process through differentiating working roll peripheral speeds, depending on the asymmetry factor used, the magnitude of the total roll separating force can be reduced and, at the same time, a smaller elastic deflection of rolling stand elements can be achieved. As a result smaller elastic deflection of the working rolls, smaller dimensional deviations across its width and length finished plate can be obtained.


2019 ◽  
Vol 61 (12) ◽  
pp. 927-932 ◽  
Author(s):  
V. Yu. Rubtsov ◽  
O. I. Shevchenko ◽  
M. V. Mironova

One  of  the  important  reasons  for  the  downtime  of  ball  rolling  mills  is  replacement  of  rolls  due  to  their  wear  and  tear.  The  degree  and  zones  of  critical  wear  of  ball  rolling  rolls  are  investigated  in  the  article, where the greatest wear is observed over the flanges in zone of billet  capture.  Conditions  necessary  to  capture  the  blank  and  to  perform  rolling  process  are  analytically  determined.  Variable  frequency  method  of  roll  rotations  is  proposed  as  a  progressive  technology  for  blank supply. The results of tests for its variations in accordance with  linear  and  quadratic  law  are  presented.  Known  formulas  determining  average  strain  rate  at  rolls  rotational  speed  change  are  converted  for  linear and quadratic dependences. Experimental studies have been carried  out  in  conditions  of  EVRAZ  Nizhnetagilsky  Metallurgical  Plant  ball rolling mills during rolling of 60mm ball made of Sh-3G steel. Experiments  were  performed  for  given  parameters  of  manual  change  in  rolls rotation speed at blank capture by rollers. The results have shown  a  significant  effect  of  change  in  rotational  speed  on  average  specific  pressure during blank capture. Evaluation of torque-time and average  contact  pressure  for  calculated  and  experimental  data  are  presented.  Empirical characteristics are also described at variable rotational speed  of rolls according to linear and quadratic law. Acceptable convergence  of results of calculated and empirical characteristics is determined. Engineering solution has been proposed for that task. It consists in installation of a thyristor converter. This solution allows reduction of rolls  speed before blank capture. Also, this solution will increase frequency  to  the  nominal  value  according  to  the  given  law  after  blank  capture.  As an obtained result, there is uniform distribution of average contact  pressure over the entire length of the roll under different operating conditions  of  mill  in  automatic  mode. Application  of  this  technique  will  reduce wear degree of the rolling tool. At the same time, productivity  of ball rolling mill will be maintained. Rolls consumption and number  of rolls change will decrease due to rolls wear.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2970 ◽  
Author(s):  
Tomczak ◽  
Pater ◽  
Bulzak

This paper presents the results of theoretical and experimental investigations of a new process of rolling rods from scrap rail heads. First, the industrial applications of scrap railway rails and methods of their recycling are discussed, and then the concept of two-stage rolling of rods from heads cut off from scrap rails is proposed. In the first stage of the process, a rail head preform was rolled in a hexagonal pass of a longitudinal rolling mill. Then in the second stage, the hexagonal bar was skew rolled into a rod in a helical roll pass. Theoretical considerations were based on finite element numerical modelling. The rolling process was simulated under 3D deformation using Forge NxT v.1.1 software developed by Transvalor Company. Calculations were carried out to determine the material flow kinematics, strength, and thermal parameters of the process and to identify the phenomena that might constrain its implementation. The numerical results were verified in experimental tests, during which preforms and rods were formed from scrap rail heads. The tests were conducted in longitudinal and skew rolling mills. The results indicate that rods can be effectively formed from scrap rail heads in just two steps. Rods obtained using the proposed method can be used as full-featured, semifinished products for the manufacture of various types of machine parts.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangxu Zhang ◽  
Jiahan Bao ◽  
Wenhao Li ◽  
Zhichong Wang ◽  
Xiangshuai Meng

It is important to study the vibration of rolling mills to improve the stability of rolling production. A dynamic rolling process model is established by considering the elastic recovery of the exit strip and the influence of multiroll equilibrium, and the accuracy of the model is verified by experimental data. On this basis, based on the distribution of friction force in the deformation zone, the rolling force and rolling torque are nonlinearized. In addition, a rolling mill structure model is established by considering the structure gap and a piecewise nonlinear horizontal-vertical-torsional vibration model of the rolling mill is established by combining the structure model and dynamic rolling process model. Finally, the amplitude-frequency characteristics of the work roll under different external excitation amplitude and the dynamic bifurcation characteristics of the work roll under different gaps are analyzed. The study indicates that, by reducing excitation amplitude and structure gap, the system vibration can be reduced. The research results can provide a theoretical reference for further exploration of the coupling vibration of hot rolling mills.


2021 ◽  
Author(s):  
Christian Overhagen ◽  
Rolf Braun ◽  
Rüdiger Deike

In the joint project PIREF, the metal forming group of the University of Duisburg-Essen has collaborated with the University of Applied Sciences Ruhr-West Mülheim (Ruhr), the University of Siegen, EMG Automation GmbH and SMS group GmbH to develop sensors, for an online measurement of material velocity and cross section as well as control models for the rolling process of wire rod and bars. The University of Duisburg-Essen provided a metal forming process model for the rolling process to assess the influencing parameters on the rolled section precision. A technique was found to segregate height- from width- influencing parameters from a measured cross-sectional area and actual roll gap. With this measuring technology and with help of the process model, rules for control of the rolling process to achieve close tolerances were obtained. The modelling was accompanied by rolling trials on a laboratory rolling mill at the University of Duisburg-Essen, where a typical Round-OvalRound pass sequence was used for validation of the rolling model concerning lateral spread, inlet and outlet velocity as well as rolling force and torque calculation. The present paper shows how the material flow and the distribution of the velocity in the roll gap can be described. In subsequent rolling of bar and rod in a continuous rolling mill the dimensions can be influenced by application of longitudinal stresses and screwdown. The application of stress can be achieved by an inter-stand velocity mismatch. With the developed models the necessary velocity mismatch can be calculated.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Janusz Tomczak ◽  
Zbigniew Pater ◽  
Tomasz Bulzak ◽  
Konrad Lis ◽  
Tomasz Kusiak ◽  
...  

AbstractResults of a study investigating a skew rolling process for elongated axisymmetric parts are presented. Despite the fact that the skew rolling technique for producing such parts was developed and implemented in the mid-twentieth century, there are no studies on this problem. The first part of this paper presents the results of FEM modelling of skew rolling stepped axles and shafts (solid and hollow). The FEM analysis was performed using the MSC Simufact Forming software. The numerical simulation involved the determination of metal flow patterns, the analysis of thermal parameters of the material during rolling, and the prediction of cracking by the Cockcroft-Latham ductile fracture criterion. Force parameters of rolling solid and hollow parts were also determined. The aim of the FEM analysis was to determine initial design assumptions and parameters for the development of the skew rolling mill. Later on in the paper, a design solution of a CNC skew rolling mill for rolling parts based on their envelope profile is proposed. FEM strength test results of a mill stand, obtained with MSC. NASTRAN, are presented. Finally, the performance test results of the constructed rolling mill are presented. The experiments involved rolling real stepped shafts that were modelled numerically. Obtained results show that the proposed skew rolling method has considerable potential. The designed and constructed rolling mill can be used to perform the rolling process according to the proposed method, with the tool and material kinematics being controlled based on the set parameters of a workpiece envelope.


Sign in / Sign up

Export Citation Format

Share Document