scholarly journals Product Development and Quality Evaluation of Biscuit and Ready-to-Eat Snack from Cowpea-wheat Flour Blends

Author(s):  
Moges Yilma ◽  
◽  
Shimelis Admassu ◽  
2020 ◽  
pp. 11-21
Author(s):  
Mustapha O. Alebiosu ◽  
Badiu A. Akinbode ◽  
Iyanuoluwa S. Oni ◽  
John O. Oladele

The use of wheat, sorghum and defatted coconut flour blends in the production of whole meal cookies was investigated with the aim of encouraging the use of sorghum and coconut flour in producing value-added products. Enriched cookies were produced from the blends of wheat flour (WF) and sorghum flour (SF) in varying proportions of 100:0, 90:5, 85:10, 80:15, 75:20, 70:25, 65:30, 60:35 with 5% of defatted coconut flour (CF) added to each sample and were labelled AMUS, BMUS, CMUS, DMUS, EMUS, FMUS, GMUS, HMUS respectively. Cookies with 100% wheat flour (AMUS) served as a reference sample. The proximate, physical, mineral and sensory properties of the cookies samples were examined using standard laboratory procedures. The proximate results of the cookies showed that protein, ash, fat, crudefibre, moisture and Carbohydrate ranged from (9.18–12.25%), (0.88–1.15%), (9.59–11.19%), (2.77–3.74%), (7.10–10.89%) and (64.20–66.71%) respectively. The physical characteristics of the cookies; weight (9.69–18.20 g), diameter (272.0–333.0 mm), thickness (7.72–11.40 mm), spread ratio (23.87–41.09) differed significantly (p < 0.05). However, the sensory results showed that the cookies varied in colour (6.85–7.80), taste (6.90–8.15), aroma (7.10–7.75), crispness (6.65–7.75) and overall acceptability (7.25–8.45). The reference sample had the highest sensory scores for all the attributes except for aroma and crispiness, while cookies with 15% sorghum flour (SF) and 5% defatted coconut flour (CF) incorporation had highest score for crispness and 30% sorghum had highest score for aroma respectively. Based on the parameters evaluated 15% sorghum flour and 5% defatted coconut flour incorporation could be utilized for cookies production owing to its baking potential abilities. However, the high protein, ash and fibre contents of the cookies made with sorghum and defatted coconut flour substitution is very important as this could make a great contribution to the nutrient intake by consumers.


Author(s):  
D. B. Kiin- Kabari ◽  
B. S. Chibor ◽  
S. D. Akpoebi

The objective of this work was to produce local (Madiga) bread from the blend of wheat and fluted pumpkin seed flour and to evaluate the nutrient composition and sensory properties of enriched Madiga produced from these flour blends. Defatted fluted pumpkin seed flour was used to substitute wheat flour at the following; (Wheat to Fluted pumpkin seed flour ratio); 100:0 (control), 90:10, 80:20, 70:30, 60:40%, 50:50, and labelled as samples A, B, C, D, E, and F, respectively. The ash content ranged from 1.20 – 2.55%, with sample A given significantly lower ash content (1.20%) than those of the enriched Madiga. Significantly higher ash values of 2.55%, 2.44% and 2.39% were recorded in samples E, F and D, respectively. There was no significance in the fat content of samples A and B. Percentage protein ranged from 6.79% – 9.36%. The crude protein content of all the enriched Madiga samples were significantly higher than that of the control, Crude fiber content ranged from 0.91% – 1.82%, with sample C given significantly higher value of 1.82% followed by samples D and F. Control local Madiga gave significantly higher carbohydrate content of 74.31%. The energy value per kcal/100g for samples B, C, D, E and F were 258.62, 284.16, 296.07, 296.96 and 278.81, respectively. Samples B and C received significantly higher value of 4.70 and 4.05, respectively, keeping these samples in the ‘sweet’ to ‘very sweet’ range. Samples B and C received significantly higher overall acceptability and were scored 3.85 and 3.70, respectively. These values were however, not significantly difference from 3.33 and 2.93 as scored in samples D and E, respectively. Substitution of wheat flour with 10, 20 and 30% defatted fluted pumpkin seed flour was effective in producing enriched Madiga bread, thus recommended.


2020 ◽  
Vol 2 (6) ◽  
pp. 314-320
Author(s):  
 Brenyah Florence ◽  
Sitsofe Kwakudua Ruth ◽  
Kwaatemaa Florence

2017 ◽  
Vol 13 (3) ◽  
Author(s):  
Pinki Saini ◽  
Neelam Yadav ◽  
Devinder Kaur ◽  
V. K. Gupta ◽  
Bandana Kaundal ◽  
...  

2002 ◽  
Vol 79 (3) ◽  
pp. 332-339 ◽  
Author(s):  
Hamid A. Naeem ◽  
Norman L. Darvey ◽  
Peter W. Gras ◽  
Finlay MacRitchie

Author(s):  
U. E. Inyang ◽  
V. P. Elijah

The demand for food products with functional attributes is on the increase worldwide. The present study was aimed at evaluating the effect of supplementing whole wheat flour with 0, 10, 20, 30, 40 and 50% whole green plantain flour on pasting properties of the flour blends, proximate composition, minerals and sensory characteristics of crackers made from the blends. The 100% whole wheat flour served as the control sample. The result showed that the peak viscosity (PV), trough viscosity (TV), breakdown viscosity (BDV), final viscosity (FV) and setback viscosity (SBV) were significantly affected by the level of plantain flour substitution. The 20% plantain flour substitution level recorded the minimum PV (264.00RVU), TV (248.00RVU), FV (531.00RVU) and SBV (263.00RVU) while the 50% plantain flour substituted blend recorded the highest PV (362.00RVU), TV (328.00RVU) and FV (603.00RVU). The control sample recorded the highest SBV (312.00RVU) and least BDV (3.00RVU). The peak times for all the blended samples were the same (7 min) while the time for the control sample was 5 min. There was insignificant difference (P>0.05) in the pasting temperature which ranged from 91.30 – 92.80oC. The crude protein, fat and calcium contents progressively decreased while the ash, crude fibre, carbohydrate, K, Mg, Fe and Zn contents in the prepared crackers progressively increased with increase in the proportion of plantain flour substitution. Cracker prepared from the blend of 80% whole wheat and 20% whole green plantain flours was the most preferred by the sensory evaluation panellists in terms of taste, texture and overall acceptability. It is evident from the study that acceptable crackers of enhanced nutritive value could be produced from blend of 80% whole wheat and 20% whole green plantain flours. The use of flour from unpeeled plantain as ingredient in cracker production would eliminate waste generation and its associated environmental problems.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
Justina Y. Talabi ◽  
Babawande A. Origbemisoye ◽  
Beatrice O. Ifesan ◽  
Victor N. Enujuigha

The nutrient composition and the acceptability of biscuit from composite flours of wheat, Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were evaluated. Bambara groundnut (Vigna subterranea), Ground bean seed (Macrotyloma) and Moringa seed (Moringa oleifera) were dried, and processed into flour. The flour blends developed was used as a substitute for wheat flour as composite flour. The resulting mixtures were then used to produce biscuits at different ratios of wheat flour to flour blends; 100:0, 90:10, 80:20 and 70:30 level of the flour blends. The pasting properties, proximate composition, minerals, physical (spread ratio, weight, thickness and colour) and sensory properties of the composite biscuit were evaluated. The pasting properties of the flours showed that pasting temperature ranged from 68.50°C - 70.0°C and the peak viscousity range from 101.17 RVU – 207.17 RVU, while Break down (43.0 RVU) was highest in 90% wheat: 10% (Bambara- groundnut-ground bean seed- moringa seed flour) (WFF1). The protein content increased from 12.50% in the control (100% wheat flour) to a range of 14.40% - 16.19% in the biscuits; crude fibre decreased from 2.83 to 2.40 - 1.84%, ash content increased from 1.26% to a range of 1.53 - 2.01%, while carbohydrate and energy value reduced from 69.20 to 65.54 - 63.36% and 384.04 Kcal/100 g to 391.34 - 391.55 Kcal/100 g respectively. As the ratio of blends level increase, the thickness, diameter and weight increased but the spread ratio decreased. In conclusion incorporation of bambara groundnut, ground bean seed and moringa seed flour blends played important role in enhancing the nutritional properties of biscuits through improving their protein content, energy value and mineral elements especially calcium and potassium.


2018 ◽  
Vol 6 (3) ◽  
pp. 798-806
Author(s):  
NIDHI CHOPRA ◽  
BHAVNITA DHILLON ◽  
RUPA RANI ◽  
ARASHDEEP SINGH

The study was conducted to formulate cookies with and without partial replacement of wheat flour (W) with sweet potato (SP) and quinoa flour (Q) blends. Sweet potato flour and quinoa flour were blended in equal proportion and then incorporated at the levels of 20, 40 and 60% by replacing wheat flour to prepare cookies. The cookies formulations were: CI(Control, 100W), CII (80W+10Q+10SP), CIII (60W+20Q+20SP) and CIV (40W+30Q+30SP).The three flour types and the prepared cookies were accessed for their nutritional properties. The prepared cookies were also evaluated for their physical parameters and sensory characteristics. The nutritional profile of cookies increased with increased level of addition of sweet potato and quinoa flour. The protein, fat, fibre and ash content of cookies prepared with 60% replacement of wheat flour with sweet potato and quinoa flour blend were found to be29.3, 71.6, 51.8 and 108.3% respectively, higher than those of control cookies. The spread ratio and the thickness of cookies decreased with the addition of blended flour of sweet potato and quinoa. All the cookies were found acceptable on the hedonic scale in terms of appearance, colour, texture, flavour, taste and overall acceptability. The CII cookies were most preferred by the sensory panel with overall acceptability score of 7.8, only next to control cookies (CI) with a score of 8.


Sign in / Sign up

Export Citation Format

Share Document