scholarly journals Natural Killer (NK) Cells and Human Immunodeficiency Virus (HIV) Infection

2016 ◽  
Vol 3 (1) ◽  
pp. 13-14
Author(s):  
Manxue Jia ◽  
Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 239 ◽  
Author(s):  
Emilie M. Comeau ◽  
Kayla A. Holder ◽  
Neva J. Fudge ◽  
Michael D. Grant

Expansion of natural killer (NK) cells expressing NKG2C occurs following human cytomegalovirus (HCMV) infection and is amplified by human immunodeficiency virus (HIV) co-infection. These NKG2C-expressing NK cells demonstrate enhanced CD16-dependent cytokine production and downregulate FcεRIγ and promyelocytic leukemia zinc finger protein (PLZF). Lacking NKG2C diminishes resistance to HIV infection, but whether this affects NK cell acquisition of superior antibody-dependent function is unclear. Therefore, our objective was to investigate whether HCMV-driven NK cell differentiation is impaired in NKG2Cnull HIV-infected individuals. Phenotypic (CD2, CD16, CD57, NKG2A, FcεRIγ, and PLZF expression) and functional (cytokine induction and cytotoxicity) properties were compared between HIV–infected NKG2Cnull and NKG2C-expressing groups. Cytokine production was compared following stimulation through natural cytotoxicity receptors or through CD16. Cytotoxicity was measured by anti-CD16-redirected lysis and by classical antibody-dependent cell-mediated cytotoxicity (ADCC) against anti-class I human leukocyte antigen (HLA) antibody-coated cells. Our data indicate highly similar HCMV-driven NK cell differentiation in HIV infection with or without NKG2C. While the fraction of mature (CD57pos) NK cells expressing CD2 (p = 0.009) or co-expressing CD2 and CD16 (p = 0.03) was significantly higher in NKG2Cnull HIV-infected individuals, there were no significant differences in NKG2A, FcεRIγ, or PLZF expression. The general phenotypic and functional equivalency observed suggests NKG2C-independent routes of HCMV-driven NK cell differentiation, which may involve increased CD2 expression.


2006 ◽  
Vol 80 (5) ◽  
pp. 2529-2538 ◽  
Author(s):  
Samuel Victor Nuvor ◽  
Marianne van der Sande ◽  
Sarah Rowland-Jones ◽  
Hilton Whittle ◽  
Assan Jaye

ABSTRACT Natural killer (NK) cells are potent effectors of natural immunity and their activity prevents human immunodeficiency virus type 1 (HIV-1) viral entry and viral replication. We sought to determine whether NK immune responses are associated with different clinical course of HIV-1 and HIV-2 infections. A cross-sectional analysis of NK cell responses was undertaken in 30 HIV-1 and 30 HIV-2 subjects in each of three categories of CD4+-T-cell counts (>500, 200 to 500, and <200 cells/μl) and in 50 HIV-uninfected control subjects. Lytic activity and gamma interferon (IFN-γ) secretion were measured by chromium release and enzyme-linked immunospot assays, respectively. Flow cytometry was used to assess intracellular cytokines and chemokines. Levels of NK cytotoxicity were significantly higher in HIV-2 than in HIV-1 infections in subjects with high CD4+-T-cell counts and were similar to that of the healthy controls. In these HIV-2 subjects, cytolytic activity was positively correlated to NK cell count and inversely related to plasma viremia. Levels of intracellular MIP-1β, RANTES, tumor necrosis factor alpha, and IFN-γ produced by NK CD56bright cells were significantly higher in HIV-2- than HIV-1-infected subjects with high CD4+-T-cell counts but fell to similar levels as CD4 counts dropped. The data suggest efficient cytolytic and chemokine-suppressive activity of NK cells early in HIV-2 infection, which is associated with high CD4+ T-cell counts. Enhancement of these functions may be important in immune-based therapy to control HIV disease.


1992 ◽  
Vol 175 (3) ◽  
pp. 789-796 ◽  
Author(s):  
J Chehimi ◽  
S E Starr ◽  
I Frank ◽  
M Rengaraju ◽  
S J Jackson ◽  
...  

Natural killer cell stimulatory factor (NKSF), or interleukin 12 (IL-12), is a heterodimeric lymphokine produced by B cells that has multiple effects on T and NK cell functions. NKSF at concentrations as low as 0.4 pM enhances the spontaneous cytotoxic activity of peripheral blood lymphocytes (PBL) against a variety of tumor-derived target cell lines and virus-infected target cells. The combined treatment of PBL with NKSF and IL-2 results in a less than additive enhancement of cytotoxicity. NKSF enhances the cytotoxic activity of spontaneously cytotoxic CD16+CD5- NK cells and does not confer cytotoxic activity to CD16-CD5+ T cells. PBL from patients infected with human immunodeficiency virus (HIV) have significantly lower cytotoxic activity against tumor-derived target cells and virus-infected target cells than PBL from control healthy donors. Treatment of PBL from HIV-infected patients with NKSF and/or IL-2 results in an increase of NK cell cytotoxicity against both types of target cells to levels similar to or higher than those of untreated PBL from healthy donors. PBL from HIV-infected patients produce interferon gamma in response to NKSF and/or IL-2, although at levels 5- or 10-fold lower than those produced by PBL from healthy donors. The multiple biological effects of NKSF, its activity at very low molar concentrations, and its ability to synergize with other physiological stimuli suggest that NKSF/IL-12 is a lymphokine likely to have physiological importance and considerable therapeutic potential.


2002 ◽  
Vol 76 (15) ◽  
pp. 7528-7534 ◽  
Author(s):  
Johan K. Sandberg ◽  
Noam M. Fast ◽  
Emil H. Palacios ◽  
Glenn Fennelly ◽  
Joanna Dobroszycki ◽  
...  

ABSTRACT Vα24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the Vα24 NKT cells can be subdivided into CD4+ or CD4− subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4+ and CD4− NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4+ T-cell depletion. The number of CD4+ NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4− NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4+ NKT cells relative to regular CD4+ T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4+ lymph node homing (CD62L+) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4− CD62L− phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients.


2005 ◽  
Vol 79 (4) ◽  
pp. 2042-2049 ◽  
Author(s):  
Donald N. Forthal ◽  
Gary Landucci ◽  
Tran B. Phan ◽  
Juan Becerra

ABSTRACT Antibodies can prevent lentivirus infections in animals and may play a role in controlling viral burden in established infection. In preventing and particularly in controlling infection, antibodies likely function in the presence of large quantities of virus. In this study, we explored the mechanisms by which antibodies neutralize large inocula of human immunodeficiency virus type 1 (HIV-1) on different target cells. Immunoglobulin G (IgG) from HIV-infected patients was tested for neutralizing activity against primary R5 strains of HIV-1 at inocula ranging from 100 to 20,000 50% tissue culture infective doses. At all virus inocula, inhibition by antibody was enhanced when target cells for virus growth were monocyte-depleted, peripheral blood mononuclear cells (PBMCs) rather than CD4+ lymphocytes. However, enhanced inhibition on PBMCs was greatest with larger amounts of virus. Depleting PBMCs of natural killer (NK) cells, which express Fc receptors for IgG (FcγRs), abrogated the enhanced antibody inhibition, whereas adding NK cells to CD4+ lymphocytes restored inhibition. There was no enhanced inhibition on PBMCs when F(ab′)2 was used. Further experiments demonstrated that the release of β-chemokines, most likely through FcγR triggering of NK cells, contributed modestly to the antiviral activity of antibody on PBMCs and that antibody-coated virus adsorbed to uninfected cells provided a target for NK cell-mediated inhibition of HIV-1. These results indicate that Fc-FcγR interactions enhance the ability of antibody to neutralize HIV-1. Since FcγR-bearing cells are always present in vivo, FcγR-mediated antibody function may play a role in the ability of antibody to control lentivirus infection.


2019 ◽  
Vol 70 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Vikram Mehraj ◽  
Rayoun Ramendra ◽  
Stéphane Isnard ◽  
Franck P Dupuy ◽  
Rosalie Ponte ◽  
...  

Abstract Background Microbial translocation from the gut to systemic circulation contributes to immune activation during human immunodeficiency virus (HIV) infection and is usually assessed by measuring plasma levels of bacterial lipopolysaccharide (LPS). Fungal colonization in the gut increases during HIV-infection and people living with HIV (PLWH) have increased plasma levels of fungal polysaccharide (1→3)-β-D-Glucan (βDG). We assessed the contribution of circulating DG to systemic immune activation in PLWH. Methods Cross-sectional and longitudinal assessments of plasma βDG levels were conducted along with markers of HIV disease progression, epithelial gut damage, bacterial translocation, proinflammatory cytokines, and βDG-specific receptor expression on monocytes and natural killer (NK) cells. Results Plasma βDG levels were elevated during early and chronic HIV infection and persisted despite long-term antiretroviral therapy (ART). βDG increased over 24 months without ART but remained unchanged after 24 months of treatment. βDG correlated negatively with CD4 T-cell count and positively with time to ART initiation, viral load, intestinal fatty acid–binding protein, LPS, and soluble LPS receptor soluble CD14 (sCD14). Elevated βDG correlated positively with indoleamine-2,3-dioxygenase-1 enzyme activity, regulatory T-cell frequency, activated CD38+Human Leukocyte Antigen - DR isotype (HLA-DR)+ CD4 and CD8 T cells and negatively with Dectin-1 and NKp30 expression on monocytes and NK cells, respectively. Conclusions PLWH have elevated plasma βDG in correlation with markers of disease progression, gut damage, bacterial translocation, and inflammation. Early ART initiation prevents further βDG increase. This fungal antigen contributes to immune activation and represents a potential therapeutic target to prevent non–acquired immunodeficiency syndrome events.


2007 ◽  
Vol 88 (2) ◽  
pp. 641-651 ◽  
Author(s):  
Annette R. Rodriguez ◽  
Bernard P. Arulanandam ◽  
Vida L. Hodara ◽  
Hazel M. McClure ◽  
Elaine K. Cobb ◽  
...  

Chimpanzees are susceptible to human immunodeficiency virus type-1 (HIV-1) and develop persistent infection but generally do not progress to full-blown AIDS. Several host and immunological factors have been implicated in mediating resistance to disease progression. Chimpanzees have a higher prevalence of circulating natural killer (NK) cells than humans; however, their role in mediating resistance to disease progression is not well understood. Furthermore, NK cell survival and activity have been shown to be dependent on interleukin-15 (IL-15). Accordingly, the influence of IL-15 on NK cell activity and gamma interferon (IFN-γ) production was evaluated in naive and HIV-1-infected chimpanzees. In vitro stimulation of whole-blood cultures with recombinant gp120 (rgp120) resulted in enhanced IFN-γ production predominantly by the CD3− CD8+ subset of NK cells, and addition of anti-IL-15 to the system decreased IFN-γ production. Moreover, in vitro stimulation with recombinant IL-15 (rIL-15) augmented IFN-γ production from this subset of NK cells and increased NK cell cytotoxic activity. Stimulation with rgp120 also resulted in a 2- to 7-fold increase in IL-15 production. These findings suggest that chimpanzee CD3− CD8+ NK cells play a vital role in controlling HIV-1 infection by producing high levels of IFN-γ, and that IL-15 elicits IFN-γ production in this subpopulation of NK cells in HIV-1-infected chimpanzees.


2009 ◽  
Vol 83 (10) ◽  
pp. 5028-5034 ◽  
Author(s):  
Karen A. O'Connell ◽  
Yefei Han ◽  
Thomas M. Williams ◽  
Robert F. Siliciano ◽  
Joel N. Blankson

ABSTRACT Natural killer (NK) cells are associated with the innate immune response and are important in many viral infections. Recent studies indicate that NK cells can control human immunodeficiency virus type 1 (HIV-1) replication. We studied the effect of NK cells on HIV-1 replication in a subpopulation of HIV-1-infected individuals termed elite suppressors (ES) or elite controllers. These patients maintain a clinically undetectable viral load without treatment and thus provide a fascinating cohort in which to study the immunological response to HIV-1. Using an autologous system, we analyzed the effects of NK cells and CD8+ T cells on viral replication in CD4+ T lymphoblasts. Although we had postulated that NK cells of ES would be highly effective at controlling viral replication, we found that NK cells from some, but not all, ES were capable of inhibiting replication in the presence of interleukin-2, and the inhibition was less robust than that mediated by CD8+ T cells. Additionally, we examined whether particular alleles of the KIR receptors, specifically KIR3DS1 and KIR3DL1, or allele-ligand combinations correlated with the control of HIV-1 replication by NK cells and whether any specific KIR alleles were overrepresented in ES. Our ES cohort did not differ from the general population with respect to the frequency of individual KIR. However, of the eight ES studied, the four exhibiting the most NK cell-mediated control of viral replication also had the fewest activating KIR and were haplotype A. Thus, the strong NK cell-mediated inhibition of viral replication is not necessary for the immunological control of HIV-1 in all ES.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Kristina Hopfensperger ◽  
Jonathan Richard ◽  
Christina M. Stürzel ◽  
Frederic Bibollet-Ruche ◽  
Richard Apps ◽  
...  

ABSTRACT HLA-C-mediated antigen presentation induces the killing of human immunodeficiency virus (HIV)-infected CD4+ T cells by cytotoxic T lymphocytes (CTLs). To evade killing, many HIV-1 group M strains decrease HLA-C surface levels using their accessory protein Vpu. However, some HIV-1 group M isolates lack this activity, possibly to prevent the activation of natural killer (NK) cells. Analyzing diverse primate lentiviruses, we found that Vpu-mediated HLA-C downregulation is not limited to pandemic group M but is also found in HIV-1 groups O and P as well as several simian immunodeficiency viruses (SIVs). We show that Vpu targets HLA-C primarily at the protein level, independently of its ability to suppress NF-κB-driven gene expression, and that in some viral lineages, HLA-C downregulation may come at the cost of efficient counteraction of the restriction factor tetherin. Remarkably, HIV-2, which does not carry a vpu gene, uses its accessory protein Vif to decrease HLA-C surface expression. This Vif activity requires intact binding sites for the Cullin5/Elongin ubiquitin ligase complex but is separable from its ability to counteract APOBEC3G. Similar to HIV-1 Vpu, the degree of HIV-2 Vif-mediated HLA-C downregulation varies considerably among different virus isolates. In agreement with opposing selection pressures in vivo, we show that the reduction of HLA-C surface levels by HIV-2 Vif is accompanied by increased NK cell-mediated killing. In summary, our results highlight the complex role of HLA-C in lentiviral infections and demonstrate that HIV-1 and HIV-2 have evolved at least two independent mechanisms to decrease HLA-C levels on infected cells. IMPORTANCE Genome-wide association studies suggest that HLA-C expression is a major determinant of viral load set points and CD4+ T cell counts in HIV-infected individuals. On the one hand, efficient HLA-C expression enables the killing of infected cells by cytotoxic T lymphocytes (CTLs). On the other hand, HLA-C sends inhibitory signals to natural killer (NK) cells and enhances the infectivity of newly produced HIV particles. HIV-1 group M viruses modulate HLA-C expression using the accessory protein Vpu, possibly to balance CTL- and NK cell-mediated immune responses. Here, we show that the second human immunodeficiency virus, HIV-2, can use its accessory protein Vif to evade HLA-C-mediated restriction. Furthermore, our mutational analyses provide insights into the underlying molecular mechanisms. In summary, our results reveal how the two human AIDS viruses modulate HLA-C, a key component of the antiviral immune response.


Sign in / Sign up

Export Citation Format

Share Document