scholarly journals Aerosol characterisation including oxidative potential as a proxy of health impact

2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Miroslav Josipovic ◽  
Catherine Leal-Liousse ◽  
Belinda Crobeddu ◽  
Armelle Baeza-Squiban ◽  
C. Keitumetse Segakweng ◽  
...  

This study aimed to characterise aerosols sampled in the vicinity of a major industrialised area, i.e. the Vaal Triangle. It included thedetermination of oxidative potential as a predictive indicator of particle toxicity. Aerosol samples were collated through the cascadefiltering during an eight-month period (12 h over three days in one week). Three size fractions were analysed for organic carbon(OC), black carbon (BC) and oxidative potential (OP), while ionic content was presented as monthly and seasonal concentrations. Thecontinuous measurement of black carbon by an optical attenuation instrument was collated concurrently with cascade filtering. Thecarbonaceous content was low compared to the ionic one. Within the carbonaceous concentrations, the organic carbon was higherthan concentrations of black carbon in both seasons in the ultra-fine fraction; the opposite was the case for the fine fraction, whilethe coarse fraction concentrations of organic carbon in the dry season had higher concentrations than black carbon in the wet seasonand organic carbon in the wet season. The OP tended to increase as the size was decreasing for wet season aerosols, whereas, forthe dry season, the highest OP was exerted by the fine fraction. The ultrafine fraction was the one showing the most contrasting OPbetween the two seasons. Continuous monitoring indicated that the higher BC concentrations were recorded in the dry/winter partof the year, with the daily pattern of concentrations being typically bimodal, having both the morning and evening peaks in bothseasons. Within the ionic content, the dominance of sulphate, nitrate and ammonium was evident. Multiple linear correlations wereperformed between all determined compounds. Strong correlations of carboxylic acids with other organic compounds were revealed.These acids point to emissions of VOC, both anthropogenic and biogenic. Since they were equally present in both seasons, a mixtureof sources was responsible, both present in the wider area and throughout the year.

2019 ◽  
Author(s):  
August Andersson ◽  
Elena N. Kirillova ◽  
Stefano Decesari ◽  
Langley DeWitt ◽  
Jimmy Gasore ◽  
...  

Abstract. Sub-Saharan Africa (SSA) is a global hotspot for aerosol emissions, affecting regional environmental sustainability. In this paper we use atmospheric observations to address one of the major uncertainties of the, e.g., climate and health impact of SSA aerosols: the quantitative contributions from different emissions sources. Ambient fine fraction aerosol (PM2.5) were collected on filters at the high altitude (2590 m a.s.l.) Rwanda Climate Observatory (RCO), an SSA background site, during dry and wet seasons in 2014 and 2015. The concentrations of both carbonaceous aerosols and inorganic ions show a strong seasonal cycle, with highly elevated concentrations during the dry season. Source marker ratios, including carbon isotopes, show that the wet and dry seasons have distinct aerosol compositions. The dry season is characterized by elevated amounts of biomass burning products, approaching ~ 95 % for carbonaceous aerosols. An isotopic mass-balance estimate shows that the amount of the carbonaceous aerosols stemming from savanna fires may increase from ~ 0.6 μg/m3 in the wet season up to ~ 10 μg/m3 during the dry season. Taken together, we here quantitatively show that savanna fire is the key modulator of the seasonal aerosol composition variability at the RCO, an SSA background site.


2019 ◽  
Author(s):  
Jia Yin Sun ◽  
Cheng Wu ◽  
Dui Wu ◽  
Chunlei Cheng ◽  
Mei Li ◽  
...  

Abstract. Black carbon (BC) is an important climate forcer in the atmosphere. Amplification of light absorption can occur by coatings on BC aerosols, an effect that remains one of the major sources of uncertainties for accessing the radiative forcing of BC. In this study, the absorption enhancement factor (Eabs) was quantified by the minimum R squared (MRS) method using elemental carbon (EC) as the tracer. Two field campaigns were conducted in urban Guangzhou at the Jinan university super site during both wet season (July 31–September 10, 2017) and dry season (November 15, 2017–January 15, 2018) to explore the temporal dynamics of BC optical properties. The average concentration of EC was 1.94 ± 0.93 and 2.81 ± 2.01 μgC m−3 in the wet and dry seasons, respectively. Mass absorption efficiency at 520 nm by primary aerosols (MAEp520) determined by MRS exhibit a strong seasonality (8.6 m2g−1 in the wet season and 16.8 m2g−1 in the dry season). Eabs520 was higher in the wet season (1.51 ± 0.50) and lower in the dry season (1.29 ± 0.28). Absorption Ångström exponent (AAE470-660) in the dry season (1.46 ± 0.12) were higher than that in the wet season (1.37 ± 0.10). Collective evidence showed that the active biomass burning (BB) in dry season effectively altered optical properties of BC, leading to elevated MAE, MAEp and AAE in dry season comparing to those in wet season. Diurnal Eabs520 was positively correlated with AAE470-660 (R2 = 0.71) and negatively correlated with the AE33 aerosol loading compensation parameter (k) (R2 = 0.74) in the wet season, but these correlations were significantly weaker in the dry season, which may be related to the impact of BB. This result suggests that lensing effect was dominating the AAE diurnal variability during the wet season. The effect of secondary processing on Eabs diurnal dynamic were also investigated. The Eabs520 exhibit a clear dependency on secondary organic carbon to organic carbon ratio (SOC/OC). Eabs520 correlated well with nitrate, implying that gas-particle partitioning of semi-volatile compounds may potentially play an important role in steering the diurnal fluctuation of Eabs520. In dry season, the diurnal variability of Eabs520 was associated with photochemical aging as evidenced by the good correlation (R2 = 0.69) between oxidant concentrations (Ox=O3+NO2) and Eabs520.


2020 ◽  
Vol 20 (4) ◽  
pp. 2445-2470 ◽  
Author(s):  
Jia Yin Sun ◽  
Cheng Wu ◽  
Dui Wu ◽  
Chunlei Cheng ◽  
Mei Li ◽  
...  

Abstract. Black carbon (BC) aerosols have been widely recognized as a vital climate forcer in the atmosphere. Amplification of light absorption can occur due to coatings on BC during atmospheric aging, an effect that remains uncertain in accessing the radiative forcing of BC. Existing studies on the absorption enhancement factor (Eabs) have poor coverage on both seasonal and diurnal scales. In this study, we applied a recently developed minimum R squared (MRS) method, which can cover both seasonal and diurnal scales, for Eabs quantification. Using field measurement data in Guangzhou, the aims of this study are to explore (1) the temporal dynamics of BC optical properties at seasonal (wet season, 31 July–10 September; dry season, 15 November 2017–15 January 2018) and diel scales (1 h time resolution) in the typical urban environment and (2) the influencing factors on Eabs temporal variability. Mass absorption efficiency at 520 nm by primary aerosols (MAEp520) determined by the MRS method exhibited a strong seasonality (8.6 m2 g−1 in the wet season and 16.8 m2 g−1 in the dry season). Eabs520 was higher in the wet season (1.51±0.50) and lower in the dry season (1.29±0.28). Absorption Ångström exponent (AAE470–660) in the dry season (1.46±0.12) was higher than that in the wet season (1.37±0.10). Collective evidence showed that the active biomass burning (BB) in the dry season effectively altered the optical properties of BC, leading to elevated MAE, MAEp and AAE in the dry season compared to those in the wet season. Diurnal Eabs520 was positively correlated with AAE470–660 (R2=0.71) and negatively correlated with the AE33 aerosol loading compensation parameter (k) (R2=0.74) in the wet season, but these correlations were significantly weaker in the dry season, which may be related to the impact of BB. This result suggests that during the wet season, the lensing effect was more likely dominating the AAE diurnal variability rather than the contribution from brown carbon (BrC). Secondary processing can affect Eabs diurnal dynamics. The Eabs520 exhibited a clear dependency on the ratio of secondary organic carbon to organic carbon (SOC∕OC), confirming the contribution of secondary organic aerosols to Eabs; Eabs520 correlated well with nitrate and showed a clear dependence on temperature. This new finding implies that gas–particle partitioning of semivolatile compounds may potentially play an important role in steering the diurnal fluctuation of Eabs520. In the dry season, the diurnal variability in Eabs520 was associated with photochemical aging as evidenced by the good correlation (R2=0.69) between oxidant concentrations (Ox=O3+NO2) and Eabs520.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Xavier Mari ◽  
Thuoc Chu Van ◽  
Benjamin Guinot ◽  
Justine Brune ◽  
Jean-Pierre Lefebvre ◽  
...  

Emissions of black carbon (BC), a product of incomplete combustion of fossil fuels, biofuels and biomass, are high in the Asia-Pacific region, yet input pathways and rates to the ocean are not well constrained. Atmospheric and riverine inputs of BC in Halong Bay (Vietnam), a hotspot of atmospheric BC, were studied at monthly intervals during one year. Climate in Halong Bay is governed by the monsoon regime, characterized by a northeast winter monsoon (dry season) and southeast summer monsoon (wet season). During the dry season, atmospheric BC concentrations averaged twice those observed during the wet season. In the sea surface microlayer (SML) and underlying water (ULW), concentrations of particulate BC (PBC) averaged 539 and 11 µmol C L–1, respectively. Dissolved BC (DBC) concentrations averaged 2.6 µmol C L–1 in both the SML and ULW. Seasonal variations indicated that PBC concentration in the SML was controlled by atmospheric deposition during the dry season, while riverine inputs controlled both PBC and DBC concentrations in ULW during the wet season. Spatiotemporal variations of PBC and DBC during the wet season suggest that river runoff was efficient in transporting PBC that had accumulated on land during the dry season, and in mobilizing and transporting DBC to the ocean. The annual river flux of PBC was about 3.8 times higher than that of DBC. The monsoon regime controls BC input to Halong Bay by favoring dry deposition of BC originating from the north during the dry season, and wet deposition and river runoff during the wet season. High PBC concentrations seem to enhance the transfer of organic carbon from dissolved to particulate phase by adsorbing dissolved organic carbon and stimulating aggregation. Such processes may impact the availability and biogeochemical cycling of other dissolved substances, including nutrients, for the coastal marine ecosystem.


2021 ◽  
Vol 1 (2) ◽  
pp. 032-040
Author(s):  
Chris Onyeka Ekweozor ◽  
Johnbosco Emeka Umunnakwe ◽  
Leo O Osuji ◽  
Vincent C Weli

This study evaluated noise pollution in Onitsha metropolis, Anambra State, Nigeria in 2019. Noise levels were measured at forty sampling stations in the morning, afternoon and night within the study area for dry and wet seasons using modern noise level instruments. A control point was established at ldeani/Nnobi Junction with coordinates N 06o 05’.282’’ E 006o 55’.891’’ which was used as a reference point and for comparison with the sound levels recorded in designated locations. The results showed that the maximum noise level in the study area exceeded the Federal Ministry of Environment (FMEnv) limit by 7.8% in the dry season and by 13.11% in the wet season. Noise LAeq exceeded the NESREA LAeq limit by 29.89% in the dry season and by 33.44% in the wet season. The study indicated that the mean noise levels in the dry and wet seasons were within FMEnv limit of 90dB .It also showed that high noise levels were recorded around major junctions and market places within Onitsha, which are harmful to public health. The study further showed that transportation activities and trading activities at the market places are the main sources of high noise levels in the study area. Health impact assessment should be conducted in Onitsha metropolis for residents. State government should enforce compliance laws and regulate the activities of industries in the areas.


2020 ◽  
Author(s):  
Ma Yining ◽  
Xin Jinyuan

<p><strong>Abstract:</strong> Ecological region in southern China has been perennially affected by monsoon climate and anthropogenic emissions, resulting in complex aerosol components and frequent long-range transport. In this study, a Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model is applied to estimate aerosol radiative forcing (ARF) and multiple aerosol observation datasets is used to estimate the aerosol chemical components and optical properties. The aerosol loading and the radiative effects in the ecological region exhibited strong seasonal changes. The average major components (NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>) in Total water soluble ionic (TWSI) ,organic carbon (OC) concentration, the ratio of organic carbon to element carbon (OC/EC) and biogenic secondary organic aerosol (BSOA) tracers were 3.20±1.22 μg·m<sup>-3</sup>, 2.19±1.39 μg·m<sup>-3</sup>, 3.17 and 74.00±35.23 ng·m<sup>-3 </sup>in the dry season and 2.22±0.91 μg·m<sup>-3</sup>, 3.14±1.62 μg·m<sup>-3</sup>, 7.13 and 186.34±113.82 ng·m<sup>-3</sup> in the wet season, respectively. The average radiative forcing at the top of atmosphere (TOA) is -11.73±11.36 W/m<sup>2</sup> and -0.41±10.08 W/m<sup>2</sup> in dry and wet season. When the aerosol single scattering albedo (SSA) less than 0.9, the retrieve frequency in wet season reached account for 75%. The increase of OC and BSOA transformed by forests in the wet season weaken the cooling effects. However, the dry season is mainly composed of anthropogenic inorganic aerosols, which enhances the scattering effect. The aerosol observation baseline also verified the seasonal variation of ARF in the ecological region. Driven by multiple factors such as meteorological conditions, emission sources, and the mixed state of particulate matter, the transport patterns of air masses in ecological area exhibits completely opposite affects to ARF.</p>


2020 ◽  
Vol 20 (8) ◽  
pp. 4561-4573
Author(s):  
August Andersson ◽  
Elena N. Kirillova ◽  
Stefano Decesari ◽  
Langley DeWitt ◽  
Jimmy Gasore ◽  
...  

Abstract. Sub-Saharan Africa (SSA) is a global hot spot for aerosol emissions, which affect the regional climate and air quality. In this paper, we use ground-based observations to address the large uncertainties in the source-resolved emission estimation of carbonaceous aerosols. Ambient fine fraction aerosol was collected on filters at the high-altitude (2590 m a.s.l.) Rwanda Climate Observatory (RCO), a SSA background site, during the dry and wet seasons in 2014 and 2015. The concentrations of both the carbonaceous and inorganic ion components show a strong seasonal cycle, with highly elevated concentrations during the dry season. Source marker ratios, including carbon isotopes, show that the wet and dry seasons have distinct aerosol compositions. The dry season is characterized by elevated amounts of biomass burning products, which approach ∼95 % for carbonaceous aerosols. An isotopic mass-balance estimate shows that the amount of the carbonaceous aerosol stemming from savanna fires may increase from 0.2 µg m−3 in the wet season up to 10 µg m−3 during the dry season. Based on these results, we quantitatively show that savanna fire is the key modulator of the seasonal aerosol composition variability at the RCO.


2020 ◽  
Vol 20 (9) ◽  
pp. 5327-5354 ◽  
Author(s):  
Aka Jacques Adon ◽  
Catherine Liousse ◽  
Elhadji Thierno Doumbia ◽  
Armelle Baeza-Squiban ◽  
Hélène Cachier ◽  
...  

Abstract. Urban air pollution in West Africa has yet to be well characterized. In the frame of DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) program, intensive measurement campaigns were performed in Abidjan (Côte d'Ivoire) and Cotonou (Benin), in dry (January 2016 and 2017) and wet (July 2015 and 2016) seasons, at different sites chosen to be representative of African urban combustion sources, i.e., domestic fires (ADF), traffic (AT) and waste burning (AWB) sources in Abidjan and traffic source in Cotonou (CT). Both the size distribution of particulate matter (PM) and their chemical composition including elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSI) and trace metals were examined. Results show very high PM concentrations at all sites and a well-marked seasonality as well as a strong spatial variation. The average PM2.5 mass concentrations during the wet season are 517.3, 104.1, 90.3, and 69.1 µg m−3 at the ADF, CT, AT, and AWB sites, respectively. In the dry season, PM2.5 concentrations decrease to 375.7 µg m−3 at the ADF site, while they increase to 269.7, 141.3, and 175.3 µg m−3 at the CT, AT, and AWB sites, respectively. The annual PM2.5 levels at almost all sites are significantly higher than the WHO guideline level of 10 µg m−3. As for PM mass, (EC) and (OC) concentrations are also maximal at the ADF site, accounting for up to 69 % of the total PM mass. Such a high content is mainly linked to wood burning for domestic cooking and commercial food smoking activities. Dust contributions are dominant at CT (57 %–80 %), AT (20 %–70 %), and AWB (30 %–69 %) sites and especially in the coarse and fine-particle modes at the CT site and in the coarse fraction at the AT site, which may be explained by the impact of long-range desert-dust transport and resuspended particles from the roads, in addition to anthropogenic sources. The contributions of WSI to the total PM mass, mainly driven by chloride, nitrate, and calcium in the fine and/or large particles, are highly variable according to the sites but remain less than 30 %. Values are generally 1–3 times higher in the wet season than in the dry season. This is due not only to anthropogenic emissions but also to nitrate formation by reaction processes and natural emissions. The concentrations of trace elements reflect well the trends in dust at the traffic and AWB sites, with a predominance of Al, Na, Ca, Fe, and K, keys markers of crustal dust. This study constitutes an original database that characterizes specific African combustion sources.


2015 ◽  
Vol 15 (15) ◽  
pp. 8809-8830 ◽  
Author(s):  
F. Kuik ◽  
A. Lauer ◽  
J. P. Beukes ◽  
P. G. Van Zyl ◽  
M. Josipovic ◽  
...  

Abstract. South Africa has one of the largest industrialized economies in Africa. Emissions of air pollutants are particularly high in the Johannesburg-Pretoria metropolitan area, the Mpumalanga Highveld and the Vaal Triangle, resulting in local air pollution. This study presents and evaluates a setup for conducting modeling experiments over southern Africa with the Weather Research and Forecasting model including chemistry and aerosols (WRF-Chem), and analyzes the contribution of anthropogenic emissions to the total black carbon (BC) concentrations from September to December 2010. The modeled BC concentrations are compared with measurements obtained at the Welgegund station situated ca. 100 km southwest of Johannesburg. An evaluation of WRF-Chem with observational data from ground-based measurement stations, radiosondes, and satellites shows that the meteorology is modeled mostly reasonably well, but precipitation amounts are widely overestimated and the onset of the wet season is modeled approximately 1 month too early in 2010. Modeled daily mean BC concentrations show a temporal correlation of 0.66 with measurements, but the total BC concentration is underestimated in the model by up to 50 %. Sensitivity studies with anthropogenic emissions of BC and co-emitted species turned off show that anthropogenic sources can contribute up to 100 % to BC concentrations in the industrialized and urban areas, and anthropogenic BC and co-emitted species together can contribute up to 60 % to PM1 levels. Particularly the co-emitted species contribute significantly to the aerosol optical depth (AOD). Furthermore, in areas of large-scale biomass-burning atmospheric heating rates are increased through absorption by BC up to an altitude of about 600hPa.


Author(s):  
Wilmer Sánchez ◽  
Carl Schmitt ◽  
Alexzander Santiago ◽  
Gerles Medina

The role of Black Carbon (BC) as a contributor to glacial retreat is of particular interest to the scientific community and decision makers, due to its impact on snow albedo and glacier melt. In this study, a thermal-optical instrument (LAHM) was used to measure effective Black Carbon (eBC) in a series of surface snow samples collected from the Vallunaraju glacier, Cordillera Blanca, between April 2019 and May 2020. The time series obtained indicates a marked seasonal variability of eBC with maximum concentrations during the dry season and dramatic decrease during the wet season. The concentrations detected ranged between a minimum of 3.73 ng/g and 4.23 ng/g during the wet season and a maximum of 214.13 ng/g and 181.60 ng/g during the dry season, in the accumulation and ablation zone. Using SNICAR model, the reduction of albedo was estimated at 6.36% and 6.60% during the dry season and 0.68% and 0.95% during the wet season, which represents an average radiative forcing of 4.52 ± 1.84 W/m2 and 4.69 ± 1.59 W/m2 in the accumulation zone, and 0.49 ± 0.27 W/m2 and 0.68 ± 0.43 W/m2 in the ablation zone. The melting of snow due to the eBC translates into 80.18 ± 37.30 kg/m2 and 83.16 ± 32.75 kg/m2 during the dry season, and 7.91 ± 4.29 kg/m2 and 10.85 ± 6.62 kg/m2 during the wet season, in the accumulation and ablation zones, respectively. Finally, the HYSPLIT trajectory assessment shows that aerosols predominate in the Amazon rainforest, especially when forest fires are most abundant according to VIIRS images.


Sign in / Sign up

Export Citation Format

Share Document