scholarly journals  Sustainable forestry and iron compounds in karstic soils: qualitative and semi-quantitative results focused on the occurrence of Fe-compounds on mineral particles

2012 ◽  
Vol 58 (No. 9) ◽  
pp. 410-424
Author(s):  
K. Rejšek ◽  
M. Mišič ◽  
F. Eichler

Relic karstic soils in nine localities in the Dinaric Karst in Slovenia, five localities in the Moravian Karst and four localities in the Bohemian Karst were sampled for soil scientific, mineralogical and petrological studies focused on the presentation of descriptive aspects of particular iron compounds. The macroscopy and microscopy of Fe<sup>2+</sup> and Fe<sup>3+ </sup>compounds were determined and an interpretation of these data was performed aimed at describing sources and their palaeotransports. The presented results show that the studied karstic soils have a heterogeneous petrographical and mineralogical composition when, depending on circumstances, hematite does not dominate and goethite prevails over it or it is an opposite. Results from the chosen methods reinforce sources of the new materials as the crucial factor for the studied karstic soils. &nbsp;

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Veneranda ◽  
Guillermo Lopez-Reyes ◽  
Jose Antonio Manrique-Martinez ◽  
Aurelio Sanz-Arranz ◽  
Emmanuel Lalla ◽  
...  

Abstract This work aims to evaluate whether the multi-point analysis the ExoMars Raman Laser Spectrometer (RLS) will perform on powdered samples could serve to classify ultramafic rocks on Mars. To do so, the RLS ExoMars Simulator was used to study terrestrial analogues of Martian peridotites and pyroxenites by applying the operational constraints of the Raman spectrometer onboard the Rosalind Franklin rover. Besides qualitative analysis, RLS-dedicated calibration curves have been built to estimate the relative content of olivine and pyroxenes in the samples. These semi-quantitative results, combined with a rough estimate of the concentration ratio between clino- and ortho-pyroxene mineral phases, were used to classify the terrestrial analogues. XRD data were finally employed as reference to validate Raman results. As this preliminary work suggests, ultramafic rocks on Mars could be effectively classified through the chemometric analysis of RLS data sets. After optimization, the proposed chemometric tools could be applied to the study of the volcanic geological areas detected at the ExoMars landing site (Oxia Planum), whose mineralogical composition and geological evolution have not been fully understood.


2015 ◽  
Vol 15 (22) ◽  
pp. 13177-13194 ◽  
Author(s):  
A. Pietrodangelo ◽  
R. Salzano ◽  
C. Bassani ◽  
S. Pareti ◽  
C. Perrino

Abstract. In this work, new information has been gained on the laboratory-resuspended PM10 fraction from geological topsoil and outcropped rocks representative of the Rome area (Latium). Mineralogical composition, size distribution, optical properties and the surface radiative forcing efficiency (RFE) of dust types representing the compositional end members of this geological area have been addressed. A multi-disciplinary approach was used, based on chamber resuspension of raw materials and sampling of the PM10 fraction, to simulate field sampling at dust source, scanning electron microscopy/X-ray energy-dispersive microanalysis (SEM XEDS) of individual mineral particles, X-ray diffraction (XRD) analysis of bulk dust samples, building of number and volume size distribution (SD) from microanalysis data of mineral particles and fitting to a log-normal curve, and radiative transfer modelling (RTM) to retrieve optical properties and radiative effects of the compositional end-member dust samples. The mineralogical composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals (from volcanics lithotypes), and one mostly composed of calcite (from travertine or limestones). Lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by rock weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are reflected in the diversity of volume distributions, either within dust types or mineral species. Differences are also observed between volume distributions of calcite from travertine (natural source; SD unimodal at 5 μm a.d.) and from road dust (anthropic source; SD bimodal at 3.8 and 1.8 μm a.d.). The volcanics and travertine dusts differently affect the single scattering albedo (SSA) and the asymmetry parameter (g) in the visible (VIS) and near-infrared (NIR) regions. The downward component of the bottom-of-atmosphere (BOA) solar irradiance simulated by RTM for an atmosphere where only volcanics (or only travertine dust) composes the aerosol, shows that the volcanics contribution to the solar irradiance differs significantly from that of travertine in the NIR region, while similar contributions are modelled in the VIS. The RFE (−293 W m−2 for volcanics and −139 W m−2 for travertine, at 50° solar zenith angle) shows that volcanics dust produces a stronger cooling effect at surface than travertine, as expected for more absorbing aerosols.


2016 ◽  
Vol 23 (1-2) ◽  
Author(s):  
David Buriánek ◽  
Jiří Otava ◽  
Vít Baldík

Nové Dvory “donuts” are globular to elongated concretions, up to 10 cm in diameter, with remarkable radial structure. They were described from sandstone and limestone cavities in the Moravian karst. Microscopic analyses indicate that these nodules consist of about 45 mod. % of elongated calcite crystals (Ca0,999–0,998 Mg0,002–0,001 CO3). Angular to subrounded quartz grains form the dominant clast type. K-feldspar, strongly weathered plagioclase grains and muscovite are present in small amount. Mineralogical composition of the translucent heavy fraction of “donuts” and surrounding sandstones is interpreted as result of mixing of the detritus coming from the typical Cretaceous (Cenomanian) sediments and of detritus coming from local sources (such as Devonian clastic sediments). Translucent heavy mineral assemblage typical for the Cretaceous clastic sediments includes staurolite, kyanite, tourmaline, rutileand sillimanite, while the local material (Devonian) is characterized by a dominance of epidote and/or zircone. The Nové Dvory “donuts” can be interpreted as a product of precipitation of calcium carbonate in sand that filled the karst cavities (paleo-sinkholes or paleo-cave). 


Author(s):  
C. Colliex ◽  
P. Trebbia

The physical foundations for the use of electron energy loss spectroscopy towards analytical purposes, seem now rather well established and have been extensively discussed through recent publications. In this brief review we intend only to mention most recent developments in this field, which became available to our knowledge. We derive also some lines of discussion to define more clearly the limits of this analytical technique in materials science problems.The spectral information carried in both low ( 0<ΔE<100eV ) and high ( >100eV ) energy regions of the loss spectrum, is capable to provide quantitative results. Spectrometers have therefore been designed to work with all kinds of electron microscopes and to cover large energy ranges for the detection of inelastically scattered electrons (for instance the L-edge of molybdenum at 2500eV has been measured by van Zuylen with primary electrons of 80 kV). It is rather easy to fix a post-specimen magnetic optics on a STEM, but Crewe has recently underlined that great care should be devoted to optimize the collecting power and the energy resolution of the whole system.


Author(s):  
J.P. Fallon ◽  
P.J. Gregory ◽  
C.J. Taylor

Quantitative image analysis systems have been used for several years in research and quality control applications in various fields including metallurgy and medicine. The technique has been applied as an extension of subjective microscopy to problems requiring quantitative results and which are amenable to automatic methods of interpretation.Feature extraction. In the most general sense, a feature can be defined as a portion of the image which differs in some consistent way from the background. A feature may be characterized by the density difference between itself and the background, by an edge gradient, or by the spatial frequency content (texture) within its boundaries. The task of feature extraction includes recognition of features and encoding of the associated information for quantitative analysis.Quantitative Analysis. Quantitative analysis is the determination of one or more physical measurements of each feature. These measurements may be straightforward ones such as area, length, or perimeter, or more complex stereological measurements such as convex perimeter or Feret's diameter.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
Hiroki Kurata ◽  
Kazuhiro Nagai ◽  
Seiji Isoda ◽  
Takashi Kobayashi

Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.


Author(s):  
G. M. Brown ◽  
D. F. Brown ◽  
J. H. Butler

The term “gel”, in the jargon of the plastics film industry, may refer to any inclusion that produces a visible artifact in a polymeric film. Although they can occur in any plastic product, gels are a principle concern in films where they detract from the cosmetic appearance of the product and may compromise its mechanical strength by acting as local stress concentrators. Many film gels are small spheres or ellipsoids less than one millimeter in diameter whereas other gels are fusiform-shaped and may reach several centimeters in length. The actual composition of gel inclusions may vary from miscellaneous inorganics (i.e. glass and mineral particles) and processing additives to heavily oxidized, charred or crosslinked polymer. The most commonly observed gels contain polymer differing from the bulk of the sample in its melt viscosity, density or molecular weight.Polymeric gels are a special concern in polyethylene films. Over the years and with the examination of a variety of these samples three predominant polymeric species have been observed: density gels which have different crystallinity than the film; melt-index gels in which the molecular weight is different than the film and crosslinked gels which are comprised of crosslinked polyethylene.


Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


Author(s):  
Arezki Tagnit-Hamou ◽  
Shondeep L. Sarkar

All the desired properties of cement primarily depend on the physicochemical characteristics of clinker from which the cement is produced. The mineralogical composition of the clinker forms the most important parameter influencing these properties.Optical microscopy provides reasonably accurate information pertaining to the thermal history of the clinker, while XRDA still remains the proven method of phase identification, and bulk chemical composition of the clinker can be readily obtained from XRFA. Nevertheless, all these microanalytical techniques are somewhat limited in their applications, and SEM/EDXA combination fills this gap uniquely by virtue of its high resolution imaging capability and possibility of instantaneous chemical analysis of individual phases.Inhomogeneities and impurities in the raw meal, influence of kiln conditions such as sintering and cooling rate being directly related to the microstructure can be effectively determined by SEM/EDXA. In addition, several physical characteristics of cement, such as rhcology, grindability and hydraulicity also depend on the clinker microstructure.


Sign in / Sign up

Export Citation Format

Share Document